
A Reachability Index for Recursive Label-Concatenated Graph
Queries

Chao Zhang
Lyon 1 University

chao.zhang@univ-lyon1.fr

Angela Bonifati
Lyon 1 University

angela.bonifati@univ-lyon1.fr

Hugo Kapp
Oracle Labs

hugo.kapp@oracle.com

Vlad Ioan Haprian
Oracle Labs

vlad.haprian@oracle.com

Jean-Pierre Lozi
Oracle Labs

jean-pierre.lozi@oracle.com

ABSTRACT
Reachability queries are fundamental operators for querying and
processing graph data. They correspond to checking whether, given
a source and a target node, these nodes are reachable in a given
graph instance. Reachability queries in their simplest form without
constraints have been extensively studied and can be efficiently
evaluated in large-scale graphs. In this paper, we study the process-
ing of recursive label-concatenated reachability (RLC) queries on an
edge-labeled graph, where the reachability is defined as a regular
expression using the Kleene plus on a concatenation of at most 𝑘
edge labels. TODO: Interesting in industry. Processing RLC
queries require traversing cycles multiple times, depending on the
specified label-constraint, which is not necessary for other types of
reachability queries. We have found that current graph database
engines cannot efficiently support RLC reachability queries, and
little research has been conducted on them. We present the RLC
index, which processes RLC queries by checking whether the source
vertex can reach an intermediate vertex that can also reach the
target vertex. We propose an indexing algorithm to build the RLC
index, which guarantees soundness and completeness of query ex-
ecution and avoids redundant index entries in the RLC index. TODO:
Experimental results to be added.

PVLDB Reference Format:
Chao Zhang, Angela Bonifati, Hugo Kapp, Vlad Ioan Haprian,
and Jean-Pierre Lozi. A Reachability Index for Recursive
Label-Concatenated Graph Queries. PVLDB, 14(1): XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
URL_TO_YOUR_ARTIFACTS.

1 INTRODUCTION
Graphs have been the natural choice of data representation in vari-
ous domains [32], e.g., social, biochemical, transportation networks,
where the primary focus is to discover the relationships of enti-
ties. One of the fundamental operators to process graph data is

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

𝑃10 𝑃11 𝑃12 𝑃13

𝐴14 𝐸15 𝐴17

𝑃16

𝐸18 𝐴19

knows worksFor

knows knows

knows

knows

holds

debits

worksFor

knows

credits

holds

debits credits

Figure 1: An edge-labeled graph with nodes of persons, ac-
counts, and external entities, and five edge labels: knows,
worksFor, holds, debits, and credits.

the (plain) reachability query, i.e., checking whether there exists a
path from a source vertex 𝑠 to a target vertex 𝑡 . Various indexing
techniques have been proposed to efficiently process reachability
queries over the simple form of a graph [5, 12, 13, 15, 16, 20, 22, 24–
26, 36, 37, 39, 42, 43, 46].

To facilitate the representation of different types of relationships
in real-world applications, edge-labeled graphs and property graphs

are more widely adopted than the simple form of a graph, where
labels can be assigned to edges. In such advanced graph models,
a labeled reachability query checks whether there is a path from
𝑠 to 𝑡 that can satisfy the path constraint specified by a regular
expression over the edge labels along the path, which belongs to
the category of regular path queries (RPQs) [7, 10]. Concatenation
and the Kleene plus (or star) are two fundamental operators to form
a regular expression. We refer to reachability queries with a path
constraint of the Kleene plus over a concatenation of edge labels as
recursive label-concatenated queries (RLC queries).

Running example. The graph in Fig. 1, inspired by a real business
use case, shows an example of a social and professional network in-
cluding the information of bank accounts of social peers. Navigating
such graph by means of queries might bring interesting results, e.g.,
identifying fraud and money laundering patterns among financial
transactions. We leverage such a graph to instantiate concrete and
real-life RLC queries. The query𝑄1(𝐴14, 𝐴19, (debits, credits)+)
on the graph asks whether there is a path from 𝐴14 to 𝐴19 such
that the label sequence of the path is a concatenation of an arbi-
trary number (one or more) of occurrences of (debits,credits).
Queries like 𝑄1 can be used to identify and investigate suspicious
patterns of money transfers between account 𝐴14 and 𝐴19. The
RLC query 𝑄1((𝐴14, 𝐴19, (debits,credits)+) evaluates to 𝑡𝑟𝑢𝑒
because of the existence of the path (𝐴14, debits, 𝐸15, credits,

https://doi.org/XX.XX/XXX.XX
URL_TO_YOUR_ARTIFACTS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

𝐴17, debits, 𝐸18, credits, 𝐴19). Another example is the query
𝑄2(𝑃10, 𝑃13, (knows,worksFor)+) that evaluates to false because
there is no path from 𝑃10 to 𝑃13 satisfying the constraint (knows,
worksFor)+.

RLC queries are frequently occurring in real-world query logs,
e.g., Wikidata Query Logs [11], which is the largest repository of
open-source graph queries (of the order of 500𝑀 graph queries).
In particular, RLC queries are often timeout in these logs [11] thus
showing the limitations of graph query engines to efficiently evalu-
ate these queries. Moreover, Neo4j(v4.3) [3] and TigerGraph(v3.3)
[17], two of the main-stream graph data processing engines do not
yet support RLC queries in their current version. However, these
systems have already identified the need to support these queries
in the near future by following the developments of the Standard
Graph Query language (GQL) [2]. RLC queries can be expressed in
Gremlin supported by TinkerPop-Enabled Graph Systems, in PGQL
[41] supported by Oracle PGX [21, 38], and in SPARQL 1.1 (ASK
query) supported by Virtuoso [4], Apache Jena [1], etc. However,
many of these systems cannot efficiently evaluate RLC queries as
also shown in our experimental study. In addition, to the best of
our knowledge, little research has been carried out on the efficient
evaluation of RLC queries.

In this work, we aim at studying the problem of efficiently pro-
cessing RLC queries by designing an index that is suitable for these
queries. Our RLC index leverages the 2-Hop labeling technique [16].
More precisely, in the RLC index, we assign to each vertex 𝑣 two
sets L𝑖𝑛 (𝑣) and L𝑜𝑢𝑡 (𝑣), where L𝑖𝑛 (𝑣) contains vertices𝑢 that can
reach 𝑣 and (sub-)sequences of edge labels from 𝑢 to 𝑣 , and L𝑜𝑢𝑡 (𝑣)
contains vertices𝑤 that are reachable from 𝑣 and (sub-)sequences
of edge labels from 𝑣 to 𝑤 . Then, the RLC index processes a RLC
query with source 𝑠 and target 𝑡 by checking (i) whether there
exists vertex 𝑢, such that 𝑠 can reach 𝑢 and 𝑡 is reachable from 𝑢,
and (ii) whether the concatenation of the two recorded sequences,
i.e., ones from 𝑠 to 𝑢 and 𝑢 to 𝑡 , can satisfy the label constraint of
the query.

The major challenge for building an index to process RLC queries
is that there can be infinite sequences of edge labels from vertex
𝑠 to vertex 𝑡 due to the presence of cycles on paths from 𝑠 to 𝑡 . In
this case, there will be infinite label sequences from 𝑠 to 𝑡 because
the cycle can be traversed infinitely. Therefore, building an index
for arbitrary RLC queries can be hard since the number of label
sequences for cyclic graphs is exponential and potentially infinite.
To overcome this issue, we introduce an input parameter 𝑘 in RLC
queries, which is the number of concatenated labels, e.g., 𝑘 = 2
for𝑄1(𝐴14, 𝐴19, (debits,credits)+) as there are 2 labels concate-
nated. Interestingly, we found that 𝑘 usually has an upper-bound in
practice. As an example, in massive real-world query logs [11], the
length of concatenations with recursion is not larger than 3 and the
total amount of queries with this characteristic is a large fraction
of the property paths in the logs (roughly 65%). Moreover, many of
these queries such as query 𝑄1 above, are timeout in the logs, as
they are complex to evaluate (NP-complete under the simple path
semantics [8]). The RLC index is built with an input parameter 𝑘 ,
and can answer any RLC query using a label concatenation of at
most k labels. More precisely, we propose an indexing algorithm
conducting backward and forward BFS from each vertex to build
the RLC index. During each iteration of the BFS, we generate label

constraints on the fly using 𝑘 , which can be used to guide the sub-
sequent search and avoid traversing cycles infinitely. In addition,
we identify the situations where redundant traversals and index
entries can be avoided and design corresponding rules for speeding
up index construction and reducing index size.

Contribution. Our main contributions are summarized as follows:
• We introduce recursive label-concatenated reachability query
(RLC query) that uses concatenation and the Kleene plus to
form path constraints. We analyze the problem for building
a reachability index for RLC queries, and propose a novel
design based on an input parameter 𝑘 to overcome the un-
derlying issue of cycle traversal.
• We propose the RLC index, the first reachability index for
processing RLC queries, and a corresponding indexing algo-
rithm. We formally proved that the constructed RLC index
is sound and complete for a parameter 𝑘 given arbitrarily,
where redundant index entries can be completely removed.
• TODO: Experimental results

We formally define RLC queries in Section 2. We present the
theoretical foundation of the RLC index in Section 3, and the RLC
index and the indexing algorithm with pruning rules in Section 4.
Experimental results are presented in Section 5. We discuss related
works in Section 6 and conclude in Section 7.

2 PROBLEM STATEMENT
An edge-labeled graph is 𝐺 = (𝑉 , 𝐸,L), where 𝑉 is a finite set of
vertices, 𝐸 ⊆ 𝑉 ×L×𝑉 a finite set of labeled edges, and L a finite set
of labels. For the graph in Fig. 1, we have L = {knows, worksFor,
debits, credits, holds}, and 𝑒1=(𝑃10, knows, 𝑃11) is a labeled
edge. We use _ : 𝐸 → L to denote the mapping from an edge
to its label, e.g., _(𝑒1) = knows. The frequently used symbols are
summarized in Table 1.

2.1 Minimum Repeats
We use 𝑙𝑖 to denote an edge label, 𝐿 = (𝑙1, ..., 𝑙𝑛) a label sequence,
|𝐿 | = 𝑛 the length of 𝐿, and 𝜖 the empty label sequence, i.e., |𝜖 | = 0.
The label sequence 𝐿′ = (𝑙 ′1, ..., 𝑙

′
𝑛′) is a repeat of 𝐿 = (𝑙1, ..., 𝑙𝑛), if

there exists an integer 𝑧, such that 𝑛
𝑛′ = 𝑧 ≥ 1, and 𝑙 ′

𝑗
= 𝑙 𝑗+𝑖×𝑛′

for every 𝑗 ∈ (1, ..., 𝑛′) and 𝑖 ∈ (0, ..., 𝑧 − 1). A repeat 𝐿′ of 𝐿 is
minimum, if 𝐿′ has the shortest length of all repeats of 𝐿. The
minimum repeat (MR) of 𝐿 is denoted as 𝑀𝑅(𝐿) that is also a se-
quence of edge labels. For example, given the path (𝑃10, knows,
𝑃11, worksFor, 𝑃12, knows, 𝑃13, worksFor, 𝑃16) in Fig. 1, we have
𝑀𝑅(𝑝 (𝑃10, 𝑃16)) = (knows,worksFor). If 𝐿 = 𝑀𝑅(𝐿), we also say
𝐿 is a minimum repeat. Given a positive integer 𝑘 and a label se-
quence 𝐿, if |𝑀𝑅(𝐿) | ≤ 𝑘 , then we say 𝐿 has a non-empty k-MR that
is𝑀𝑅(𝐿). We use ◦ to denote the concatenation of label sequences
(or labels), i.e., (𝑙1, ..., 𝑙𝑖) ◦ (𝑙𝑖+1, ..., 𝑙𝑛) = (𝑙1, ..., 𝑙𝑛), and 𝐿 ◦ 𝐿 = 𝐿2.
For the empty label sequence 𝜖 , we define 𝐿 ◦ 𝜖 = 𝜖 ◦ 𝐿 = 𝐿.

Lemma 2.1. For a label sequence 𝐿,𝑀𝑅(𝐿) is unique.

In this paper, we consider the arbitrary paths semantics [7], i.e.,
allowing for duplicate vertices along the path, which can have an
arbitrary length. An arbitrary path 𝑝 in 𝐺 is a vertex-edge alter-
nating sequence 𝑝 (𝑣0, 𝑣𝑛) = (𝑣0, 𝑒1, ..., 𝑒𝑛, 𝑣𝑛), where 𝑛 ≥ 1, and
𝑣𝑖 ∈ 𝑉 , 𝑒𝑖 ∈ 𝐸, 𝑖 ∈ (0, ..., 𝑛), and |𝑝 (𝑣0, 𝑣𝑛) | = 𝑛 that is the length

2

of the path. For 𝑝 (𝑣0, 𝑣𝑛), 𝑣0 is the source vertex and 𝑣𝑛 is the tar-
get vertex. If there exists a path from 𝑣0 to 𝑣𝑛 , then 𝑣0 reaches 𝑣𝑛 ,
denoted as 𝑣0 { 𝑣𝑛 . The label sequence of the path 𝑝 (𝑣0, 𝑣𝑛) is
Λ(𝑝 (𝑣0, 𝑣𝑛)) = (_(𝑒1), ..., _(𝑒𝑛)). When the context is clear, we also
use Λ(𝑢, 𝑣) to denote the label sequence of a path from 𝑢 to 𝑣 .

2.2 RLC Query
A label-constraint is 𝐿+ = (𝑙1, ..., 𝑙𝑘)+, where ‘+’ is the Kleene plus,
i.e., one-or-more concatenations of the label sequence 𝐿 = (𝑙1, ..., 𝑙𝑘).
W.l.o.g, we focus on a label-constraint 𝐿, s.t. 𝐿 = 𝑀𝑅(𝐿), e.g., 𝐿+ =
(knows,worksFor)+. TODO: At the end of this paper, we
discuss how to handle the case of 𝐿 ≠ 𝑀𝑅(𝐿). A label
sequence Λ(𝑢, 𝑣) of a path 𝑝 (𝑢, 𝑣) satisfies a label-constraint 𝐿+,
if and only if 𝑀𝑅(Λ(𝑢, 𝑣)) = 𝐿. If such a path 𝑝 (𝑢, 𝑣) exists, then
we say 𝑢 can reach 𝑣 with the constraint 𝐿+, denoted as 𝑢 𝐿+

{ 𝑣 ,

otherwise 𝑢
𝐿+

̸{ 𝑣 .

Definition 2.2 (RLC reachability queries). Given an edge-labeled
directed graph𝐺 = (𝑉 , 𝐸,L), a RLC query is a triple (𝑠, 𝑡, 𝐿+), where
𝑠, 𝑡 ∈ 𝑉 , 𝐿 = 𝑀𝑅(𝐿), and |𝐿 | ≤ 𝑘 . If 𝑠 𝐿+

{ 𝑡 , then the answer to the
query is true. Otherwise, the answer is false.

Given a RLC query 𝑄 (𝑠, 𝑡, 𝐿+), under the arbitrary path seman-
tics, two naive approaches can be used to evaluate 𝑄 . The first
approach is using an online traversal, e.g., BFS, where each visited
edge should satisfy the label (or state) transition of 𝐿+, aka a finite
automata-based approach. The second approach is pre-computing
an extended transitive closure, where for each pair of vertices (𝑠, 𝑡)
we record whether 𝑠 { 𝑡 , and all label sequences from 𝑠 to 𝑡 . As
demonstrated in our experiments, these two solutions require either
too much query time or storage space, which are impractical for
a large graph. Note that the naive approach to build a transitive
closure is not feasible in our case because of cycles on the path
from 𝑠 to 𝑡 . We adopt a variant of transitive closure equipped with
kernels (presented in Section 3). We describe in detail this variant
of transitive closure in Section 5.

2.3 Indexing Problem
Our goal is to build an index to efficiently process RLC queries. The
corresponding indexing problem is summarized as follows.

Problem 2.1. Given an edge-labeled graph 𝐺 , the indexing prob-
lem is to build a reachability index for processing RLC queries on 𝐺 ,
such that the storage of label sequences in the index is minimal and

the correctness of query processing is preserved.

We firstly observe that recording MRs, instead of raw label se-
quences of paths in 𝐺 , can reduce the storage space, and such
a strategy does not violate the correctness of query processing.
The main benefits are twofold: (1) MRs are not longer than raw
label sequences; (2) different raw label sequences may have the
same MR. For example, in Fig. 1, there exist two paths from 𝑃10 to
𝑃16 having the label sequence (knows,knows,knows,knows) and
(knows,knows,knows), which have the same MR, i.e., knows.

Definition 2.3 (Concise Label Sequences). Let P(𝑠, 𝑡) be the set of
all paths from 𝑠 to 𝑡 . The concise set of label sequences from vertex

Table 1: Frequently used symbols.

Notation Description
𝑝 , or 𝑝 (𝑢, 𝑣) a path, or the path from 𝑢 to 𝑣
◦ concatenation of labels or label sequences
Λ(𝑢, 𝑣), or Λ(𝑝 (𝑢, 𝑣)) the label sequence of a path from 𝑢 to 𝑣
𝐿 a label sequence
𝐿+ a label constraint
𝑀𝑅(𝐿) the minimum repeat of a label sequence 𝐿
𝑘 the upper bound of the number of labels in a 𝐿+
𝑆𝑘 (𝑢, 𝑣) the concise set of minimum repeats from 𝑢 to 𝑣

𝑢
𝐿+
{ 𝑣 , or 𝑢

𝐿+

̸{ 𝑣 𝑢 reaches 𝑣 through an 𝐿+-path, or otherwise
𝑢 { 𝑣 , or 𝑢 ̸{ 𝑣 𝑢 reaches 𝑣 , or otherwise
𝑖𝑛(𝑣), or 𝑜𝑢𝑡 (𝑣) the set of vertices that can reach 𝑣 , or 𝑣 can reach
𝑎𝑖𝑑 (𝑣) the access id of vertex 𝑣 by the indexing algorithm

𝑠 to 𝑡 , denoted as 𝑆𝑘 (𝑠, 𝑡), is the set of k-MRs of all label sequences
from 𝑠 to 𝑡 , i.e., 𝑆𝑘 (𝑠, 𝑡) = {𝐿 |𝑝 ∈ P(𝑠, 𝑡), 𝑀𝑅(Λ(𝑝)) = 𝐿, |𝐿 | ≤ 𝑘}.

To deal with RLC queries, we need to compute and record the
concise label sequences.

Proposition 2.4. 𝑠 𝐿+
{ 𝑡, |𝐿 | ≤ 𝑘 in 𝐺 if and only if 𝐿 ∈ 𝑆𝑘 (𝑠, 𝑡).

For example, in Fig. 1, we have 𝑆2 (𝑃12, 𝑃16) = {(knows), (knows,
worksFor)}. With 𝑆2 (𝑃12, 𝑃16), RLC queries with 𝑃12 as source and
𝑃16 as target can be processed correctly.

3 KERNEL-BASED SEARCH
In this section, we deal with the following question: how to compute

concise label sequences? The problem for computing a concise label
sequence is that if a cycle exists on a path from 𝑠 to 𝑡 , there exist
infinite paths from 𝑠 to 𝑡 , which makes the computation of 𝑆𝑘 (𝑠, 𝑡)
infeasible, e.g., |P(𝑃11, 𝑃13) | in Fig. 1 is infinite. We overcome this
issue by leveraging the upper bound of concatenated labels in a
constraint, i.e., 𝑘 . We observed that we don’t have to compute all
possible label sequences for paths going from 𝑃11 to 𝑃13, as the
set of label sequences 𝐿 such that |𝑀𝑅(𝐿) | <= 𝑘 is actually finite.
Specifically, let 𝑣 be an intermediate vertex that a forward breadth-
first search from 𝑠 is visiting. The main idea is that when the path
from 𝑠 to 𝑣 reaches a specific length, we can decide whether we
need to further explore the outgoing neighbours of 𝑣 . Moreover, if
the outgoing neighbours of 𝑣 are worth exploring, the following
search can be guided by a specific label constraint. In the following,
we first provide an illustrating example, and then formally define
the specific constraint that is used to guide search.

Example 3.1 (Illustrating Example). Consider the graph in Fig. 1.
Assuming we need to compute 𝑆2 (𝑃11, 𝑃13), i.e., 𝑘 = 2. When 𝑃13 is
visited for the first time, we add (knows) and (worksFor, knows)
into 𝑆2 (𝑃11, 𝑃13). After that, when the depth of search reaches 2𝑘 =

4, i.e., 𝑃12 is visited for the second time, we have 4 different label
sequences, which are (knows, knows, knows, knows), (knows,
knows, knows, worksFor), (worksFor, knows, knows, knows),
and (worksFor, knows, knows, worksFor). Given this, all the 4
label sequences except the first one does not need to be expanded
anymore, because their expansions can not have a non-empty k-MR,
i.e., a MR whose length is not larger than 2. Then the following
search is guided by (knows)+ that is computed from (knows, knows,

3

knows, knows). However, because there already exists (knows) in
𝑆2 (𝑃11, 𝑃13), the search does not need to continue.

Definition 3.2 (Kernel and Tail). If a label sequence 𝐿 can be
represented as 𝐿 = (𝐿′)ℎ ◦ 𝐿′′, where ℎ ≥ 2, and 𝐿′ and 𝐿′′ are two
label sequences, such that 𝐿′ ≠ 𝜖 and𝑀𝑅(𝐿′) = 𝐿′, and 𝐿′′ is 𝜖 or
a proper prefix of 𝐿′, then 𝐿 has the kernel 𝐿′ and the tail 𝐿′′.

For example, the label sequence (knows, knows, knows, knows)
from 𝑃11 has a kernel knows and a tail 𝜖 .

Kernel-based search.When a kernel has been determined at a ver-
tex that is being visited, the subsequent search to compute 𝑆𝑘 (𝑠, 𝑡)
can be guided by the Kleene plus of the kernel, e.g., since 𝑃12 is
visited, (knows)+ is used to guide the search in Example 3.1. We
call this strategy KBS (kernel-based search) in the remainder of this
paper. In a nutshell, KBS consists of two phases: (1) kernel-search
and (2) kernel-BFS, where the first phase is to compute kernels, and
the second to perform kernel-guided BFS. We show in Theorem 3.4
that KBS can compute a sound and complete 𝑆𝑘 (𝑠, 𝑡). Before that,
we fist show the kernel of a label sequence is unique in Lemma 3.3
that will be used in the proof of Theorem 3.4.

Lemma 3.3. If 𝐿 has a kernel, then the kernel is unique.

Proof. The proof is based on induction. The statement is if a
label sequence 𝐿 of length 𝑛 has a kernel, then the kernel is unique.
It is trivial to prove the initial case |𝐿 | = 2. Assuming the case 𝑛 is
true, then we show the case 𝑛 + 1 is also true. Let |𝐿 | = 𝑛 + 1. We
use 𝐿 to denote the label sequence obtained by removing the last
label of 𝐿, i.e., |𝐿 | = 𝑛. We proof the case 𝑛 + 1 below.

Assuming 𝐿 can have two different kernels 𝐿1 and 𝐿2, and 𝐿1 ≠

𝐿2, then 𝐿 = (𝐿1)ℎ1 ◦ 𝐿′1, ℎ1 ≥ 2 and 𝐿 = (𝐿2)ℎ2 ◦ 𝐿′2, ℎ2 ≥ 2. If
|𝐿′1 | = 0 and |𝐿′2 | = 0, then 𝐿 has two MRs, which is contradictory
(Lemma 2.1). If |𝐿′1 | ≠ 0 and |𝐿′2 | ≠ 0, then 𝐿 has kernels 𝐿1 and 𝐿2,
which contradicts to the case 𝑛. The remaining cases are that only
one of 𝐿′1 and 𝐿′2 has a length of 0. W.l.o.g, consider |𝐿′1 | = 0 and
|𝐿′2 | ≠ 0. Given this, if ℎ1 > 2, then 𝐿 still has kernels 𝐿1 and 𝐿2,
which is contradictory. Then we have ℎ1 = 2 and |𝐿′1 | = 0, i.e.,

𝐿 = 𝐿1 ◦ 𝐿1 . (1)
In addition, we have

𝐿 = (𝐿2)ℎ2 ◦ 𝐿′2, ℎ2 ≥ 2, |𝐿′2 | ≠ 0. (2)
Let 𝐿 = (𝑙1, ..., 𝑙2 |𝐿1 |) and |𝐿1 | = 𝑎 |𝐿2 | +𝑏, 1 ≤ 𝑎, 𝑏 < |𝐿2 |. According
to Equ. (1), we have 𝑙𝑖 = 𝑙𝑖+|𝐿1 |, 1 ≤ 𝑖 ≤ |𝐿1 | and 𝑙𝑖′ = 𝑙𝑖′−|𝐿1 |, |𝐿1 | <
𝑖 ′ ≤ 2|𝐿1 |, which means 𝑙𝑖 = 𝑙𝑖+𝑎 |𝐿2 |+𝑏 and 𝑙𝑖′ = 𝑙𝑖′−𝑎 |𝐿2 |−𝑏 . Based
on Equ. (2), we have 𝑙𝑖 = 𝑙𝑖+𝑏 and 𝑙𝑖′ = 𝑙𝑖′−𝑏. Given this, consider the
following two cases: case (i) if 2|𝐿1 | mod 𝑏 = 0, then |𝑀𝑅(𝐿1◦𝐿1) | =
𝑏 ≠ |𝐿1 | that contradicts to the fact that 𝐿1 is the unique MR of
𝐿; case (ii) if 2|𝐿1 | mod 𝑏 ≠ 0, then 𝐿 = (𝐿3)ℎ3 ◦ 𝐿′3, where either
|𝐿3 | = 𝑏, ℎ3 ≥ 2, and |𝐿′3 | ≠ 0, or |𝐿3 | < 𝑏 and ℎ3 > 2. Note that,
in the two sub-cases of case (ii), 𝐿′3 is 𝜖 , or a proper prefix of 𝐿3.
Therefore, we have 𝐿 has a kernel 𝐿3, |𝐿3 | ≤ 𝑏. However, 𝐿 also has
a kernel 𝐿2 and |𝐿2 | > 𝑏 ≥ |𝐿3 |, which is also a contradiction. □

Theorem 3.4. Given a path 𝑝 from 𝑢 to 𝑣 and a positive integer
𝑘 . Then 𝑝 has a non-empty k-MR if and only if one of the following

conditions is satisfied,

- Case 1: |𝑝 | ≤ 𝑘 .𝑀𝑅(Λ(𝑝)) is the k-MR of 𝑝 ;

- Case 2: 𝑘 < |𝑝 | ≤ 2𝑘 . If |𝑀𝑅(Λ(𝑝)) | ≤ 𝑘 , 𝑀𝑅(Λ(𝑝)) is the k-MR

of 𝑝 ;
- Case 3: |𝑝 | > 2𝑘 . Let𝑥 be the intermediate vertex on 𝑝 , s.t. |𝑝 (𝑢, 𝑥) | =

2𝑘 . If Λ(𝑝 (𝑢, 𝑥)) has a kernel 𝐿′ and a tail 𝐿′′, and 𝑀𝑅(𝐿′′ ◦
Λ(𝑝 (𝑥, 𝑣))) = 𝐿′, then 𝐿′ is the k-MR of 𝑝 .

Proof. It is not difficult to prove Case 1 and Case 2. We focus
on Case 3 below. For ease of presentation, let Λ(𝑢, 𝑥) = Λ(𝑝 (𝑢, 𝑥))
and Λ(𝑥, 𝑣) = Λ(𝑝 (𝑥, 𝑣)).

(Sufficiency) Because Λ(𝑢, 𝑥) has the kernel 𝐿′ and the tail 𝐿′′,
such that Λ(𝑢, 𝑥) = (𝐿′)ℎ ◦ 𝐿′′, ℎ ≥ 2. Thus, we have𝑀𝑅(Λ(𝑢, 𝑥) ◦
Λ(𝑥, 𝑣)) = 𝑀𝑅((𝐿′)ℎ ◦ 𝐿′′ ◦ Λ(𝑥, 𝑣)) = 𝐿′, otherwise 𝑀𝑅(𝐿′′ ◦
Λ(𝑥, 𝑣)) ≠ 𝐿′. In addition, we have |𝐿′ | ≤ 𝑘 because |Λ(𝑢, 𝑥) | = 2𝑘 .
Thus, 𝐿′ is the k-MR of 𝑝 .

(Necessity) We show that 𝑝 does not have a non-empty k-MR in
the following two cases.
- Case (i): Λ(𝑢, 𝑥) does not have a kernel and a tail. Assuming 𝑝 can
have a non-empty k-MR 𝐿′′′ in this case. Because |𝐿′′′ | ≤ 𝑘 and
|Λ(𝑢, 𝑥) | = 2𝑘 , such that Λ(𝑢, 𝑥) has a kernel and a tail, which
contradicts to the case definition.

- Case (ii): Λ(𝑢, 𝑥) has a kernel 𝐿′ and a tail 𝐿′′, but 𝑀𝑅(𝐿′′ ◦
Λ(𝑥, 𝑣)) ≠ 𝐿′. Assuming 𝑝 has a non-empty k-MR 𝐿′′′ in this
case. Knowing that |𝐿′′′ | ≤ 𝑘 and |Λ(𝑢, 𝑥) | = 2𝑘 , such that
𝐿′′′ = 𝐿′ because the kernel of Λ(𝑢, 𝑥) is unique (Lemma 3.3).
Therefore, 𝑀𝑅((𝐿′)ℎ ◦ 𝐿′′ ◦ Λ(𝑥, 𝑣)) = 𝐿′, ℎ ≥ 2, which means
𝑀𝑅(𝐿′′ ◦ Λ(𝑥, 𝑣)) = 𝐿′ that is also a contradiction.

□

In Case 3 of Theorem 3.4, if Λ(𝑢, 𝑥) of 𝑝 does not have a kernel,
then 𝑝 does not have a non-empty k-MR. Otherwise the k-MR of
𝑝 can only be the kernel of Λ(𝑢, 𝑥). In another sense, Theorem 3.4
says that although |𝑝 (𝑢, 𝑣) | can be very large or infinite, we can
determine the possible k-MRs of 𝑝 by applying a search up to 2𝑘
length from 𝑢. In addition, with kernels determined in Theorem 3.4,
we will not miss any k-MRs for paths from 𝑢 to 𝑣 .

We discuss below two strategies to compute kernels based on
Theorem 3.4, namely lazy KBS and eager KBS, and explain why
eager KBS is better than lazy KBS, which is used in our indexing
algorithm presented later in Section 4.3.

Lazy KBS. Theorem 3.4 can be transformed into an algorithm to
find kernels, i.e., for a source vertex we generate all paths of length
2𝑘 , and then compute all the kernels of these paths. This strategy
is referred to as lazy KBS, which means kernels are correctly deter-
mined when the length of paths reaches 2𝑘 , e.g., lazy KBS is used
in Example 3.1.

Eager KBS. In contrast to the lazy strategy, we can determine
kernel candidates earlier, instead of valid kernels that requires the
length of paths to be 2𝑘 . The main idea is to treat any k-MR that is
computed using any path 𝑝, |𝑝 | ≤ 𝑘 as a kernel candidate, and then
kernel candidates will be used to guide subsequent search. As KBS
is a breadth-first search, such that the set of kernel candidates does
not miss any valid kernels. Although a false kernel may be included,
the search guided by the false kernel will not reach a target vertex
through a path of which the k-MR is the false kernel. Therefore,
the set of concise label sequences computed by the eager strategy
is still sound and complete.

4

𝑣1

𝑣2𝑣3

𝑣4 𝑣5

𝑣6

𝑙1

𝑙 1𝑙1𝑙 2

𝑙1

𝑙2𝑙 3

𝑙1

𝑙1 𝑙 2 𝑙 2

Figure 2: Running example.

Example 3.5. Consider the example of computing 𝑆2 (𝑃10, 𝑃13) in
Fig. 1. With eager strategy, two kernel candidates can be determined
when 𝑃12 is visited for the first time, namely (knows) and (knows,
worksFor). Although a false kernel (knows, worksFor) is in-
cluded, the search guided by (knows, worksFor)+ cannot reach
𝑃13 through a path that has the k-MR (knows, worksFor).

The key advantage of the eager strategy over the lazy strategy
is that it allows us to advance KBS from the kernel-search phase to
the kernel-BFS phase. This can make KBS more efficient because
generating all paths of length 2𝑘 from a source vertex is more
expensive than generating only paths of length 𝑘 , especially on
dense graphs. In addition, vertices that have been visited can be
marked in the kernel-BFS phase, avoiding unnecessary traversals.

4 RLC INDEX
In this section, we present the RLC index, and also the corresponding
query and indexing algorithm.

4.1 Overarching Idea
Given a RLC query (𝑠, 𝑡, 𝐿+), |𝐿 | ≤ 𝑘 , the idea is to check whether
there exists a 2-hop path (𝑠, ..., 𝑢, ..., 𝑡) whose label sequence satisfies
the label constraint 𝐿+, where 𝑢 is an intermediate vertex in 𝑝 . In
another sense, the query is answered by concatenating two MRs of
sub-paths of 𝑝 , i.e.,𝑀𝑅(Λ(𝑠,𝑢)) and𝑀𝑅(Λ(𝑢, 𝑡)).

Definition 4.1 (RLC Index). Let 𝐺 = (𝑉 , 𝐸,L) be an edge-labeled
graph and 𝑘 be a positive integer. The RLC index of𝐺 assigns to each
vertex 𝑣 ∈ 𝑉 two sets: L𝑖𝑛 (𝑣) = {(𝑢, 𝐿′) |𝑢 { 𝑣, 𝐿′ ∈ 𝑆𝑘 (𝑢, 𝑣))},
and L𝑜𝑢𝑡 (𝑣) = {(𝑤, 𝐿′′) |𝑣 { 𝑤, 𝐿′′ ∈ 𝑆𝑘 (𝑣,𝑤)}. Therefore, there
is a path 𝑝 (𝑠, 𝑡) satisfying an arbitrary constraint 𝐿+, |𝐿 | ≤ 𝑘 , if and
only if one of the following cases is satisfied,
• Case 1: ∃(𝑥, 𝐿′) ∈ L𝑜𝑢𝑡 (𝑠) and ∃(𝑥, 𝐿′′)) ∈ L𝑖𝑛 (𝑡), such that
𝐿′ = 𝐿′′ = 𝐿;
• Case 2: ∃(𝑡, 𝐿′′′) ∈ L𝑜𝑢𝑡 (𝑠), or ∃(𝑠, 𝐿′′′) ∈ L𝑖𝑛 (𝑡), such that
𝐿′′′ = 𝐿.

The size of the RLC index is defined to be
∑

𝑣∈𝑉 |L𝑜𝑢𝑡 (𝑣) | + |L𝑖𝑛 (𝑣) |.
Example 4.2 (Running Example of RLC Index). Consider the graph

𝐺 shown in Fig. 2. The RLC index with 𝑘 = 2 for 𝐺 is presented in
Table 2. We have𝑄1 (𝑣3, 𝑣6, (𝑙2, 𝑙1)+) = 𝑡𝑟𝑢𝑒 because ∃(𝑣1, (𝑙2, 𝑙1)) ∈
L𝑜𝑢𝑡 (𝑣3) and ∃(𝑣1, (𝑙2, 𝑙1)) ∈ L𝑖𝑛 (𝑣6). Indeed, there exists the
path (𝑣3, 𝑙2, 𝑣4, 𝑙1, 𝑣1, 𝑙2, 𝑣3, 𝑙1, 𝑣6) from 𝑣3 to 𝑣6 in the graph in Fig. 2.
For 𝑄2 (𝑣1, 𝑣2, (𝑙2, 𝑙1)+), the answer is 𝑡𝑟𝑢𝑒 because ∃(𝑣1, (𝑙2, 𝑙1)) ∈
L𝑖𝑛 (𝑣2). Given 𝑄3 (𝑣1, 𝑣3, (𝑙1)+), we have the answer is 𝑓 𝑎𝑙𝑠𝑒 . Al-
though 𝑣1 can reach 𝑣3, e.g., ∃(𝑣1, 𝑙2) ∈ L𝑖𝑛 (𝑣3), the constraint
(𝑙1)+ of 𝑄3 cannot be satisfied.

Given𝐺 = (𝑉 , 𝐸,L), the minimum RLC index is the one with the
minimum

∑
𝑣∈𝑉 |L𝑜𝑢𝑡 (𝑣) | + |L𝑖𝑛 (𝑣) |. Finding the minimum RLC

Table 2: The RLC index for the graph in Fig. 2.

V L𝒊𝒏 (𝒗) L𝒐𝒖𝒕 (𝒗)

𝑣1 - (𝑣1, 𝑙2), (𝑣1, 𝑙1), (𝑣1, (𝑙2, 𝑙1))
𝑣2 (𝑣1, 𝑙1), (𝑣1, (𝑙2, 𝑙1)) (𝑣1, (𝑙2, 𝑙1)), (𝑣1, 𝑙1)

𝑣3 (𝑣1, 𝑙2), (𝑣1, (𝑙1, 𝑙2))
(𝑣1, 𝑙2), (𝑣1, (𝑙2, 𝑙1)), (𝑣1, 𝑙1),
(𝑣3, (𝑙1, 𝑙2))

𝑣4 (𝑣1, 𝑙2) (𝑣1, 𝑙1), (𝑣3, (𝑙1, 𝑙2))

𝑣5
(𝑣1, (𝑙1, 𝑙2)), (𝑣1, 𝑙1),(𝑣3, (𝑙1, 𝑙2)),
(𝑣2, 𝑙2)

(𝑣1, 𝑙1), (𝑣3, (𝑙1, 𝑙2))

𝑣6
(𝑣1, (𝑙2, 𝑙1)), (𝑣3, 𝑙1), (𝑣3, (𝑙2, 𝑙3)),
(𝑣4, 𝑙3)

-

index is NP-hard, because it can become a 2-Hop labeling when L
contains only one label, and finding the minimum 2-Hop labeling
is NP-hard [16]. Although it is expensive to find the minimum RLC
index, it is still worthwhile to remove as many redundant index
entries as possible. The intuition is that if there exists a path 𝑝
such that 𝑢 𝐿+

{ 𝑣 , then the RLC index only records the reachability
information of path 𝑝 once, i.e., either through Case 1 or Case 2 in
Definition 4.1.

Definition 4.3 (Condensed RLC Index). The RLC index is condensed,
if for every index entry (𝑠, 𝐿) ∈ L𝑖𝑛 (𝑡) or (𝑡, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠), there
do not exist index entry (𝑢, 𝐿′) ∈ L𝑜𝑢𝑡 (𝑠) and (𝑢, 𝐿′′) ∈ L𝑖𝑛 (𝑡)
such that 𝐿 = 𝐿′ = 𝐿′′.

We focus on designing an indexing algorithm that can build a
correct (sound and complete) and condensed RLC index.

4.2 Query Algorithm
The query algorithm is presented in Algorithm 1, where we use 𝐼 to
denote an index entry. Each index entry 𝐼 has the schema (𝑣𝑖𝑑,𝑚𝑟),
where 𝑣𝑖𝑑 represents vertex id and 𝑚𝑟 recorded minimal repeat.
Given a RLC query (𝑠, 𝑡, 𝐿+), to efficiently find (𝑢, 𝐿′) ∈ L𝑜𝑢𝑡 (𝑠)
and (𝑢, 𝐿′′) ∈ L𝑖𝑛 (𝑡), we execute a merge join over L𝑜𝑢𝑡 (𝑠) and
L𝑖𝑛 (𝑡), shown at line 4 in 1. The output of the merge join is a set of
index entry pairs (𝐼 ′, 𝐼 ′′), such that 𝐼 ′.𝑣𝑖𝑑 = 𝐼 ′′.𝑣𝑖𝑑 . Index entries
are sorted in ascending order in advance by 𝑣𝑖𝑑 . Case 1 of the RLC
index (see Definition 4.1) is checked at line 1, and Case 2 is checked
at line 2. If one of these cases can be satisfied, the answer true
will be returned immediately. Otherwise, index entries in L𝑜𝑢𝑡 (𝑠)
and L𝑖𝑛 (𝑡) are exhaustively merged, and the answer false will be
returned at last.

4.3 Indexing Algorithm
In this subsection, we present an indexing algorithm (Algorithm
2) to build the RLC index which is sound, complete, and condensed.
We use 𝑣𝑖 to denote a vertex with id 𝑖 . Given a graph𝐺 (𝑉 , 𝐸,L), the
indexing algorithm mainly performs backward and forward KBS
from each vertex in𝑉 to create index entries, and pruning rules are
applied to accelerate index building.

4.3.1 Indexing with KBS. We explain below how the backward
KBS creates L𝑜𝑢𝑡 -entries. The forward KBS follows the same pro-
cedure, except that L𝑖𝑛-entries will be created. The backward KBS
from vertex 𝑣𝑖 tries to create L𝑜𝑢𝑡 -entries. Suppose KBS is visit-
ing 𝑣 . If |𝑀𝑅(Λ(𝑣, 𝑣𝑖)) | ≤ 𝑘 , then we add (𝑣𝑖 , 𝑀𝑅(Λ(𝑣, 𝑣𝑖))) into

5

Algorithm 1: Query Algorithm
1 procedure Query(𝑠, 𝑡, 𝐿+)
2 if ∃(𝑡, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠) or ∃(𝑠, 𝐿) ∈ L𝑖𝑛 (𝑡) then
3 return true;
4 for (𝐼 ′, 𝐼 ′′) ∈ mergeJoin(L𝑜𝑢𝑡 (𝑠),L𝑖𝑛 (𝑡)) do
5 if 𝐼 ′.𝑚𝑟 = 𝐿 and 𝐼 ′′.𝑚𝑟 = 𝐿 then
6 return true;

7 return false;

L𝑜𝑢𝑡 (𝑣). Although there may be cycles in a graph, KBS will not
go on forever, because when the depth of search reaches 𝑘 , KBS
will be transformed into the kernel-BFS phase that is guided by the
Kleene plus of kernel candidates, such that KBS terminates if any
invalid label (or state) transition is met, or a vertex has been visited
with the same label (or state).

KBSs are executed from each vertex in 𝑉 and this execution
follows a specific order. The idea is to start with vertices that have
more connections to other vertices. In the RLC index, we use the
IN-OUT strategy, i.e., sorting vertices according to (|𝑜𝑢𝑡 (𝑣) | + 1) ×
(|𝑖𝑛(𝑣) | +1) in descending order, which has shown to be an efficient
and effective strategy in the literature of 2-hop labeling framework
[6, 35, 45]. The id of vertex 𝑣 in the sorted list is referred to as
access id, denoted as 𝑎𝑖𝑑 (𝑣) starting from 1, e.g., for the graph in
Fig. 2, the sorted list is (𝑣1, 𝑣3, 𝑣2, 𝑣4, 𝑣5, 𝑣6), where 𝑎𝑖𝑑 (𝑣1) = 1 and
𝑎𝑖𝑑 (𝑣3) = 2.

Example 4.4 (Running Example of Indexing). Consider the graph
in Fig. 2 and the RLC index in Table 2 with 𝑘 = 2. The KBSs
are executed from each vertex in the order of (𝑣1, 𝑣3, 𝑣2, 𝑣4, 𝑣5, 𝑣6).
We explain the backward KBS from 𝑣1 as follows. The traversal
of depth 1 of this backward KBS visits 𝑣4 and creates (𝑣1, 𝑙1) in
L𝑜𝑢𝑡 (𝑣4), visits 𝑣3 and creates (𝑣1, 𝑙2) in L𝑜𝑢𝑡 (𝑣3), and visits 𝑣5
and creates (𝑣1, 𝑙1) ∈ L𝑜𝑢𝑡 (𝑣5). The traversal of depth 2 creates
(𝑣1, (𝑙2, 𝑙1)) in L𝑜𝑢𝑡 (𝑣3), (𝑣1, 𝑙2) in L𝑜𝑢𝑡 (𝑣1), (𝑣1, 𝑙1) ∈ L𝑜𝑢𝑡 (𝑣2),
and (𝑣1, (𝑙2, 𝑙1)) ∈ L𝑜𝑢𝑡 (𝑣2). Then the kernel-search phase of this
KBS terminates because the depth of the search reaches 2, which
generates kernel candidate 𝑙1 with a set of frontier vertices {𝑣4, 𝑣5, 𝑣2},
kernel candidate 𝑙2 with a set of frontier vertices {𝑣3, 𝑣1}, and kernel
candidate (𝑙2, 𝑙1) with a set of frontier vertices (𝑣3, 𝑣2). After this,
this KBS is turned into three kernel-BFSs guided by (𝑙1)+, (𝑙2)+, and
(𝑙2, 𝑙1)+ with the corresponding frontier vertices. The kernel-BFS
terminates under the case of an invalid label transition or a re-
peated visiting. For example, the label of the incoming edge of 𝑣3 is
𝑙2, which is an invalid state transition of (𝑙2, 𝑙1)+ in a backward KBS
from 𝑣1, such that the kernel-BFS guided by (𝑙2, 𝑙1)+ terminates at
𝑣3. For another example, index entry (𝑣1, 𝑙1) ∈ L𝑜𝑢𝑡 (𝑣1) is created
when 𝑣1 is visited for the first time by the kernel-BFS guided by
(𝑙1)+, but this kernel-BFS will not continue when it visits 𝑣5 that
has already been visited.

4.3.2 Pruning Rules. To accelerate index construction as well as
remove redundant index entries, we apply pruning rules during
KBS. For ease of presentation, we present the pruning rules for
backward KBSs, and the same is true for forward ones.

- PR1: If the k-MR of an index entry that needs to be recorded can

be acquired from the current snapshot of the RLC index, then the

index entry can be skipped.

- PR2: If vertex 𝑣𝑖 is visited by the backward KBS performed from

vertex 𝑣𝑖′ s.t. 𝑎𝑖𝑑 (𝑣𝑖′) > 𝑎𝑖𝑑 (𝑣𝑖), then the corresponding index entry
can be skipped.

- PR3: During the backward kernel-BFS, if vertex 𝑣𝑖 is visited by the

backward kernel-BFS performed from vertex 𝑣𝑖′ , and PR1 or PR2 is
triggered, then vertex 𝑣𝑖 and 𝑖𝑛(𝑣𝑖) can be skipped.

Note that if PR2 is triggered then PR1 must be triggered, because a
path 𝑝 can be visited by either the forward KBS from the source of
𝑝 or the backward KBS from the target of 𝑝 . However, checking for
PR2 only requires the access id of vertices instead of evaluating a
query using a snapshot of the RLC index. This is why we extract PR2
from PR1. The correctness of the indexing algorithm with pruning
rules is guaranteed by Theorem 4.10 presented in Section 4.4.

Example 4.5 (Running Example of Pruning Rules). Consider the
forward KBS from 𝑣3 for the graph in Fig. 2. It can visit 𝑣2 through
label sequence (𝑙2, 𝑙1), such that it tries to create (𝑣3, (𝑙2, 𝑙1)) in
L𝑖𝑛 (𝑣2). However, there already exist (𝑣1, (𝑙2, 𝑙1)) ∈ L𝑜𝑢𝑡 (𝑣3) and
(𝑣1, (𝑙2, 𝑙1)) ∈ L𝑖𝑛 (𝑣2), such that𝑄 (𝑣3, 𝑣2, (𝑙2, 𝑙1)+) = 𝑡𝑟𝑢𝑒 with the
current snapshot of the RLC index, i.e., the reachability information
has already been recorded. Therefore, the index entry (𝑣3, (𝑙2, 𝑙1))
in L𝑖𝑛 (𝑣2) is pruned according to PR1. As an example of PR2,
consider the backward KBS from 𝑣2. It can visit 𝑣1 through path
(𝑣1, 𝑙2, 𝑣3, 𝑙1, 𝑣2), such that it tries to create (𝑣2, (𝑙2, 𝑙1)) in L𝑜𝑢𝑡 (𝑣1).
Given 𝑎𝑖𝑑 (𝑣2) > 𝑎𝑖𝑑 (𝑣1), such that the index entry can be pruned
by PR2. As an example of PR3, consider the forward KBS from 𝑣2. It
visits 𝑣2 through path (𝑣2, 𝑙2, 𝑣5, 𝑙1, 𝑣1, 𝑙2, 𝑣3, 𝑙1, 𝑣2), where at 𝑣5 the
KBS is transformed from a kernel-search to a kernel-BFS guided
by (𝑙2, 𝑙1)+. When 𝑣2 visits itself for the first time, the KBS tries
to create index entry (𝑣2, (𝑙2, 𝑙1)) ∈ L𝑖𝑛 (𝑣2), which can be pruned
by PR1 because of (𝑣1, (𝑙2, 𝑙1)) ∈ L𝑜𝑢𝑡 (𝑣2) and (𝑣1, (𝑙2, 𝑙1)) ∈∈ (𝑣2).
In this case, PR3 is triggered also, which means 𝑣2 and 𝑜𝑢𝑡 (𝑣2) is
skipped by this kernel-BFS.

The indexing algorithm is presented in Algorithm 2. For ease of
presentation, each procedure focuses on the backward case, and the
forward case can be obtained by trivial modifications, e.g., replacing
in-coming edges with out-going edges. We use the KMP algorithm
[27] to compute the minimum repeat of a label sequence, i.e.MR() at
line 13 in Algorithm 2. The indexing algorithm performs backward
and forward KBS from each vertex. The KBS from a vertex 𝑣 consists
of two phases: kernel-search (line 6 to line 17) and kernel-BFS (line
24 to line 37). The kernel-search returns for each vertex 𝑣 all kernel
candidates and a set of frontier vertices 𝑣𝑆𝑒𝑡 . The kernel-BFS is
performed for each kernel candidate, i.e., a BFS with vertices in
𝑣𝑆𝑒𝑡 as frontier vertices guided by a kernel candidate. PR1 and PR2
are included at line 19, which can be triggered by both kernel-search
and kernel-BFS. PR3 implemented at line 31, on the other hand, can
only be triggered by kernel-BFS.

Remark. An alternative version of the RLC index allowed to con-
catenate different minimum repeats to answer a RLC query, i.e., in
Case 1 of Definition 4.1, 𝐿′ can be different from 𝐿′′ in the initial
version. However, such a design will prevent the use of PR3, which
can prune vertices and avoid redundant traversals. Consequently,
the indexing time of the alternative version is much longer than

6

Algorithm 2: Indexing Algorithm.
1 procedure kernelBasedSearch(𝑣, 𝑘)
2 for (𝐿, 𝑣𝑆𝑒𝑡) ∈ backwardKernelSearch(𝑣, 𝑘) do
3 backwardKernelBFS(𝑣, 𝑣𝑆𝑒𝑡, 𝐿);
4 for (𝐿, 𝑣𝑆𝑒𝑡) ∈ forwardKernelSearch(𝑣, 𝑘) do
5 forwardKernelBFS(𝑣, 𝑣𝑆𝑒𝑡, 𝐿);

6 procedure backwardKernelSearch(𝑣, 𝑘)
7 𝑞 ← an empty queue of (vertex, label sequence);
8 𝑞.enqueue(𝑣, 𝜖);
9 𝑚𝑎𝑝 ← a map of (kernel candidates, vertex set);

10 while 𝑞 is not empty do
11 (𝑥, 𝑠𝑒𝑞) ← 𝑞.dequeue();
12 for in-coming edge 𝑒 (𝑦, 𝑥) to 𝑥 do
13 𝑠𝑒𝑞′ ← _(𝑒 (𝑦, 𝑥)) ◦ 𝑠𝑒𝑞; 𝐿 ←MR(𝑠𝑒𝑞′);
14 insert (𝑦, 𝑣, 𝐿);𝑚𝑎𝑝.𝑔𝑒𝑡 (𝐿).𝑎𝑑𝑑 (𝑥);
15 if |𝑠𝑒𝑞′ | < 𝑘 then
16 𝑞.enqueue(𝑦, 𝑠𝑒𝑞′);

17 return𝑚𝑎𝑝;
18 procedure insert(𝑠, 𝑡, 𝐿)
19 if 𝑎𝑖𝑑 (𝑡) > 𝑎𝑖𝑑 (𝑠) or Query(𝑠, 𝑡, 𝐿+) then // PR 2 or 1
20 return false;
21 else
22 add (𝑡, 𝐿) into L𝑜𝑢𝑡 (𝑠);
23 return true;

24 procedure backwardKernelBFS(𝑣, 𝑣𝑆𝑒𝑡, 𝐿)
25 𝑞 ← an empty queue of (𝑣𝑒𝑟𝑡𝑒𝑥, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟);
26 for 𝑥 ∈ 𝑣𝑆𝑒𝑡 do
27 mark 𝑥 as visited by state 1, 𝑞.enqueue(𝑥, |𝐿 |);
28 while 𝑞 is not empty do
29 (𝑥, 𝑖) ← 𝑞.dequeue(), 𝑖 ← 𝑖 − 1;
30 if 𝑖 = 0 then 𝑖 = |𝐿 | ;
31 label 𝑙 ← 𝐿.𝑔𝑒𝑡 (𝑖);
32 for in-coming edge 𝑒 (𝑦, 𝑥) to 𝑥 do
33 if 𝑙 ≠ _(𝑒 (𝑦, 𝑥)) or 𝑦 was visited by state 𝑖 then
34 continue;

35 if 𝑖 = 1 and insert(𝑦, 𝑣, 𝐿) then // PR 3
36 continue;

37 𝑞.enqueue(𝑦, 𝑖); mark 𝑦 visited by state 𝑖;

the version introduced in this paper, e.g., even for the smallest
graph used in our experiment (AD graph presented in Section 5),
the indexing time of the alternative indexing is 32X slower than
the current one. Therefore, we focus on concatenating the same
minimum repeats, as shown in Case 1 of Definition 4.1.

4.4 Correct and Condensed RLC Index
We present in Theorem 4.9 that pruning rules can guarantee the
condensed property of the RLC index, and in Theorem 4.10 that the
RLC index constructed by Algorithm 2 is correct, i.e., sound and

complete. Before proceeding further, we first present the following
lemmas that will be used to proof the two theorems.

Lemma 4.6. Given a path 𝑝 (𝑠, 𝑡) having a k-MR 𝐿. If the KBS from
𝑠 can visit 𝑡 (or the KBS from 𝑡 can visit 𝑠), then the k-MR 𝐿 of 𝑝 (𝑠, 𝑡)
must be recorded in the index.

Proof. If the KBS from 𝑠 can visit 𝑡 , then regardless of whether
PR1 or PR2 is applied, the k-MR 𝐿 of 𝑝 (𝑠, 𝑡) must be recorded. □

Lemma 4.7. Given two paths 𝑝 (𝑠,𝑢) and 𝑝 (𝑢, 𝑡) with k-MR 𝐿 in

a graph, where 𝑎𝑖𝑑 (𝑢) < 𝑎𝑖𝑑 (𝑠) and 𝑎𝑖𝑑 (𝑢) < 𝑎𝑖𝑑 (𝑡). We have: if

𝑎𝑖𝑑 (𝑢) ≤ 𝑖 , then the k-MR of the path from 𝑠 to 𝑡 through vertex 𝑢 is

recorded by Algorithm 2 in the 𝑖-th snapshot of the RLC index that is

computed after performing KBS from a vertex with access id 𝑖 .

Proof. The proof is based on induction. It is trivial to prove the
initial case 𝑖 = 1. We assume the case 𝑖 = 𝑛 is true and prove the
case 𝑖 = 𝑛 + 1 below. We only need to show the case 𝑎𝑖𝑑 (𝑢) = 𝑛 + 1.
Let 𝑝 (𝑠, 𝑡) = (𝑠, ..., 𝑢, ..., 𝑡).

Assuming the backward KBS from 𝑢 does not visit 𝑠 . Then PR3
is triggered, such that there exists vertex𝑤 , 𝑎𝑖𝑑 (𝑤) < 𝑎𝑖𝑑 (𝑢), and
𝑝 (𝑠,𝑤) and 𝑝 (𝑤,𝑢) have the k-MR 𝐿. This case can be reduced to
the case 𝑖 = 𝑛, because the k-MR of path (𝑤, ..., 𝑢, ..., 𝑡) is 𝐿 and
𝑎𝑖𝑑 (𝑤) < 𝑎𝑖𝑑 (𝑢) < 𝑛 + 1. In the same way, we can also prove the
case if the forward KBS from 𝑢 does not visit 𝑡 .

We consider the case that both the backward KBS and the for-
ward KBS from𝑢 can visit 𝑠 and 𝑡 . For 𝑝 (𝑠,𝑢), we have the following
two cases: Case (1) ∃(𝑢, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠); Case (2) ∃(𝑣, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠)
and ∃(𝑣, 𝐿) ∈ L𝑖𝑛 (𝑢), 𝑎𝑖𝑑 (𝑣) < 𝑎𝑖𝑑 (𝑢). For Case (2), both 𝑝 (𝑠, 𝑣)
and 𝑝 (𝑣, 𝑡) have k-MR 𝐿, such that this case can be reduced to the
case 𝑖 = 𝑛 as 𝑎𝑖𝑑 (𝑣) < 𝑎𝑖𝑑 (𝑢) = 𝑛 + 1. Then we only need to con-
sider Case (1), i.e., ∃(𝑢, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠). In the same way, for 𝑝 (𝑢, 𝑡),
we only need to consider the case ∃(𝑢, 𝐿) ∈ L𝑖𝑛 (𝑠). Given this,
we have the k-MR of the path from 𝑠 to 𝑡 is recorded by having
(𝑢, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠) and (𝑢, 𝐿) ∈ L𝑖𝑛 (𝑡). □

Lemma 4.8. Given a path 𝑝 from 𝑠 to 𝑡 with a k-MR 𝐿. If the index
entry (𝑡, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠) (or (𝑠, 𝐿) ∈ L𝑖𝑛 (𝑡)) is pruned because of PR3,
then we have one of the following two cases:

- ∃(𝑠, 𝐿) ∈ L𝑖𝑛 (𝑡) (or ∃(𝑡, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠));
- ∃(𝑣, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠) and ∃(𝑣, 𝐿) ∈ L𝑖𝑛 (𝑡), such that 𝑎𝑖𝑑 (𝑣) <

𝑎𝑖𝑑 (𝑡) (or 𝑎𝑖𝑑 (𝑣) < 𝑎𝑖𝑑 (𝑠)).

Proof. We proof the case of 𝑎𝑖𝑑 (𝑡) ≤ 𝑎𝑖𝑑 (𝑠). The proof for
the other case follows the same sketch. Let 𝑝 (𝑠, 𝑡) = (𝑠, ..., 𝑢, ..., 𝑡),
such that PR3 can be triggered. W.l.o.g, let 𝑎𝑖𝑑 (𝑢) < 𝑎𝑖𝑑 (𝑡) (if
𝑎𝑖𝑑 (𝑢) ≥ 𝑎𝑖𝑑 (𝑡) and PR3 is triggered, then there exists vertex
𝑤, 𝑎𝑖𝑑 (𝑤) < 𝑎𝑖𝑑 (𝑢), which can be reduced to the case of 𝑎𝑖𝑑 (𝑢) <
𝑎𝑖𝑑 (𝑡)). Given this, we have path 𝑝 (𝑠,𝑢) and 𝑝 (𝑢, 𝑡) have the same
k-MR 𝐿 according to the definition of PR3. Then we have three
cases: Case (1) 𝑎𝑖𝑑 (𝑠) > 𝑎𝑖𝑑 (𝑢); Case (2) 𝑎𝑖𝑑 (𝑠) = 𝑎𝑖𝑑 (𝑢); Case (3)
𝑎𝑖𝑑 (𝑠) < 𝑎𝑖𝑑 (𝑢). Case (1) can be proved by Lemma 4.7, because
𝑎𝑖𝑑 (𝑠) > 𝑎𝑖𝑑 (𝑢), 𝑎𝑖𝑑 (𝑡) > 𝑎𝑖𝑑 (𝑢), and both 𝑝 (𝑠,𝑢) and 𝑝 (𝑢, 𝑡) have
k-MR 𝐿. Case (2) can be proved by Lemma 4.6 because the back-
ward KBS from 𝑡 can visit 𝑢, i.e., 𝑎𝑖𝑑 (𝑠) = 𝑎𝑖𝑑 (𝑢). The Case (3) can
also by proved by 4.6 if the forward KBS from 𝑠 can visit 𝑡 . The
only left case is that 𝑎𝑖𝑑 (𝑠) < 𝑎𝑖𝑑 (𝑢) and the forward KBS from 𝑠
cannot visit 𝑡 because of PR3. In this case, there must exist vertex

7

𝑣, 𝑎𝑖𝑑 (𝑣) < 𝑎𝑖𝑑 (𝑠) < 𝑎𝑖𝑑 (𝑢) = 𝑛 + 1, and the k-MR of 𝑝 (𝑠, 𝑣) and
𝑝 (𝑣,𝑢) is 𝐿. Then we have 𝑎𝑖𝑑 (𝑣) < 𝑎𝑖𝑑 (𝑠) and 𝑎𝑖𝑑 (𝑣) < 𝑎𝑖𝑑 (𝑡),
and both path 𝑝 (𝑠, 𝑣) and (𝑣, ..., 𝑢, ..., 𝑡) have the k-MR 𝐿, which can
be proved by Lemma 4.7.

□

Theorem 4.9. With pruning rules, the RLC index is condensed.

Proof. Assuming in the RLC index there exists index entry
(𝑡, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠), and there also exist (𝑢, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠) and (𝑢, 𝐿) ∈
L𝑖𝑛 (𝑡). Then we have 𝑎𝑖𝑑 (𝑢) ≥ 𝑎𝑖𝑑 (𝑡), otherwise (𝑡, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠)
can be pruned. Given this, (𝑢, 𝐿) ∈ L𝑖𝑛 (𝑡) can not exist because the
backward KBS from 𝑡 performs earlier than the forward KBS from𝑢,
which means we have either (𝑡, 𝐿) ∈ L𝑜𝑢𝑡 (𝑢), or (𝑣, 𝐿) ∈ L𝑜𝑢𝑡 (𝑢)
and (𝑣, 𝐿) ∈ L𝑖𝑛 (𝑡), such that (𝑢, 𝐿) ∈ L𝑖𝑛 (𝑡) is pruned. The proof
follows the same sketch if (𝑠, 𝐿) ∈ L𝑖𝑛 (𝑡) is considered. □

Theorem 4.10 (Sound and Complete RLC Index). Given an edge-
labeled graph𝐺 and the RLC index of𝐺 with a positive integer 𝑘 built

by Algorithm 2. There exists a path from vertex 𝑠 to vertex 𝑡 in 𝐺 ,
which satisfies a label constraint 𝐿+, |𝐿 | ≤ 𝑘 , if and only if one of the

following condition is satisfied

(1) ∃(𝑥, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠) and ∃(𝑥, 𝐿) ∈ L𝑖𝑛 (𝑡);
(2) ∃(𝑡, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠), or ∃(𝑠, 𝐿) ∈ L𝑖𝑛 (𝑡).

Proof. (Sufficiency) It is straightforward.
(Necessity) Let 𝑝 be the path from 𝑠 to 𝑡 with the k-MR 𝐿. W.l.o.g,

let the backward KBS from 𝑡 perform first. Then we have two cases:
the backward KBS from 𝑡 can visit or cannot visit 𝑠 . In the first case,
the k-MR 𝐿 of path 𝑝 must be recorded according to Lemma 4.6. In
the second case, PR3 must be triggered. According to Lemma 4.8,
we have the k-MR of 𝑝 is also recorded. □

4.5 Complexity Analysis
Query time. Given a query 𝑄 (𝑠, 𝑡, 𝐿+), the time complexity of us-
ing Algorithm 1 to answer the query is 𝑂 (|L𝑜𝑢𝑡 (𝑠) | + |L𝑖𝑛 (𝑡) |),
because we only need to take 𝑂 (|L𝑜𝑢𝑡 (𝑠) | + |L𝑖𝑛 (𝑡) |) time to ap-
ply the merge join to find (𝑥, 𝐿) ∈ L𝑜𝑢𝑡 (𝑠) and (𝑥, 𝐿) ∈ L𝑖𝑛 (𝑡).
Note that index entries in L𝑜𝑢𝑡 (𝑠) and L𝑖𝑛 (𝑡) have already been
sorted according to access id of vertices, which means sorting is not
required by mapping vertex id to access id during querying index.

Indexing time.We present the time complexity of Algorithm 2 as
follows. Given a directed edge-labeled graph 𝐺 = (𝑉 , 𝐸,L), and a
positive integer 𝑘 . The worst case is that𝐺 is a complete graph, and
there are |L| edges between every pair of vertices, each of which
has a distinct edge label. In this case, performing kernel-search of
depth 𝑘 from a vertex requires 𝑂 ((|L| |𝑉 |)𝑘), which can generate
|𝑉 |𝑘2 pairs of kernel candidates and sets of frontier vertices. Thus,
kernel-search from each vertex requires 𝑂 (|𝑉 | (|L| |𝑉 |)𝑘) time. In
addition, the indexing algorithm will only perform kernel-BFS from
the first vertex (the vertex with access 𝑖𝑑 = 1, and this can be
any vertex for a complete graph), instead of from each vertex in
𝑉 . The reason is that in a complete graph, any vertex can reach
any vertex through any minimum repeat of length up to 𝑘 , such
that after performing kernel-BFS from the first vertex, reachability
information can be fully recorded, and the other kernel-BFSs will
be pruned by PR3. Performing kernel-BFS for a kernel candidate

Table 3: Overview of real-world graphs.

Dataset |𝑽 | |𝑬 | |L|
Synthetic
Labels

Loop
Count

Triangle
Count

Advogato (AD) 6K 51K 3 4K 98K
Soc-Epinions (EP) 75K 508K 8

√
0 1.6M

Twitter-ICWSM (TW) 465K 834K 8
√

0 38K
Web-NotreDame(WN) 325K 1.4M 8

√
27K 8.9M

Web-Standford (WS) 281K 2M 8
√

0 11M
Web-Google (WG) 875K 5M 8

√
0 13M

Wiki-Talk (WT) 2.3M 5M 8
√

0 9M
Web-BerkStan (WB) 685K 7M 8

√
0 64M

Wiki-hyperlink (WH) 1.7M 28.5M 8
√

- 52M
Pokec (PR) 1.6M 30.6M 8

√
0 32M

StackOverflow (SO) 2.6M 63.4M 3 15M 114M
LiveJournal (LJ) 4.8M 68.9M 50

√
0 285M

Wiki-link-fr (WF) 3.3M 123.7M 25
√

19K 30B

takes 𝑂 ((|𝑉 | + |𝐸 |)𝑘) time. Therefore, the total time complexity of
Algorithm 2 is 𝑂 (|𝑉 |𝑘+1 |L|𝑘 + |𝑉 | |𝐸 |𝑘3).

Index size. The index size can be 𝑂 (|𝑉 |2 |L|𝑘), since L𝑖𝑛 (𝑣) or
L𝑜𝑢𝑡 (𝑣) can contain𝑂 (|𝑉 |𝐶) index entries, where𝐶 is the number
of distinct minimum repeats for all label sequences derived from
|L| of length up to 𝑘 . It can be computed as follows, 𝐶 =

∑𝑘
𝑖=1 𝐹 (𝑖),

where 𝐹 (𝑖) = |L|𝑖 −(∑𝑗 ∈𝑓 𝑎𝑐 (𝑖), 𝑗≠𝑖 𝐹 (𝑗)) with 𝐹 (1) = |L| and 𝑓 𝑎𝑐 (𝑖)
the set of factors of integer 𝑖 . Interestingly, when the input graph
is complete, where every pair of vertices has |𝐿 | labels, the index
size can be reduced to 𝐶 = 𝑂 (|𝑉 |2 |L|𝑘), because performing KBS
from vertex with the first access id can fully cover the reachability
information and other index entries needed to be created by the
following KBS will be skipped by pruning rules.

5 EXPERIMENTAL EVALUATION
We present experimental results in this section. We used real-world
and synthetic graphs to evaluate the query time, the indexing time,
and the size of the RLC index. In addition, we also compared the
query time with existing systems to illustrate the benefits of our
approach.

Baseline. Up to our knowledge, the RLC index is the first index-
ing technique designed for processing recursive label-concatenated
reachability queries, and indices for other types of reachability
queries are not usable in our context because of specific path con-
straints defined in the RLC queries. Thus, we compare the RLC index
with BFS and Bi-BFS (bidirectional BFS) in terms of query time to
understand how much improvement the index can provide against
a full online traversal. In addition, we also include ETC (extended
transitive closure) as a baseline. The indexing algorithm of ETC
performs forward KBS from each vertex without pruning rules,
and records for every pair of vertices (𝑢, 𝑣) any k-MR of any path
𝑝 (𝑢, 𝑣). There are two differences between the indexing algorithm
of ETC and the one of the RLC index: (1) only forward KBS is used
for building ETC, instead of forward and backward KBS for the RLC
index, and (2) none of the pruning rules is applied for building ETC.
Finally, we also include commercial and open-sourced systems to
evaluate query processing time, where our goal is to understand
the query time improvement of the RLC index on top of mainstream
graph data processing engines.

8

ETC RLC Index

AD EP TW WN WS WG WT WB WH PR SO LJ WF
Graphs

100
101
102
103
104
105
106

In
de

xi
ng

 T
im

e
(s

)

0.73

22.55

8.14 33.07 53.53 101.33 812.87

167.05
3707.18

3104.09
57072.4

18241 51338.7

X X X X X X X X X X X X

(a) Indexing Time

AD EP TW WN WS WG WT WB WH PR SO LJ WF
Graphs

101
102
103
104
105
106

In
de

x
Si

ze
 (M

B)

1.9

29.3 93.5 122.6 173.9 403.6 607
474.2 1319

1212.6

844.2
6248.1

6467.9

X X X X X X X X X X X X

(b) Index Size

Figure 3: Indexing time and index size of ETC and the RLC index (RI) for real-world graphs. Building ETC timed out (24 hours)
for all the graphs except the AD graph.

BFS BiBFS ETC RLC Index

AD EP TW WN WS WG WT WB WH PR SO LJ WF
Graphs

103
104
105
106
107
108
109

Ex
ec

ut
io

n
Ti

m
e

(u
s) X XX X X X X X X X X X X X(a) True Queries of Q1

AD EP TW WN WS WG WT WB WH PR SO LJ WF
Graphs

103
104
105
106
107
108
109

Ex
ec

ut
io

n
Ti

m
e

(u
s) XX X X X X X X X X X X X(b) False Queries of Q1

AD EP TW WN WS WG WT WB WH PR SO LJ WF
Graphs

103
104
105
106
107
108
109

Ex
ec

ut
io

n
Ti

m
e

(u
s) X XX X X X X X X X X X X X(c) True Queries of Q2

AD EP TW WN WS WG WT WB WH PR SO LJ WF
Graphs

103
104
105
106
107
108
109

 E
xe

cu
tio

n
Ti

m
e

(u
s) X X X X X X X X X X X X(d) False Queries of Q2

Figure 4: Execution time of 1000-true queries or 1000-false queries of types 𝑄1 or 𝑄2 on real-world graphs using BFS, BiBFS,
ETC and the RLC index.

Dataset. We use both real-world datasets and synthetic graphs
in the experiments. We present the statistics of real-world datasets
in Table 3, which are from either the SNAP [29] or the KNOECT
[28] project. We also include for each graph the loop count and
the triangle count (cycles of length 1 and 3) shown in the last two
columns in Table 3. We generate synthetic labels for graphs that
do not have labels on its edges, indicated by the last column in
Table 3. The edge labels are generated according to the a Zipfian
distribution with exponent 2. The synthetic graphs used in our
experiments follows two different modes, namely the Erdős–Rényi
(ER) model and the Barabási-Albert (BA) model. ER-graphs with |𝑉 |
nodes and |𝐸 | edges are generated by uniformly choosing a graph
from all possible graphs with |𝑉 | nodes and |𝐸 | edges. BA-graphs
with |𝑉 | nodes and |𝐸 | edges are generated through firstly having
a complete graph of |𝑉 |2000 nodes and then continuously adding new
nodes that are connected to previously generated |𝐸 ||𝑉 | nodes, e.g., a
generated BA-graph with 1𝑀 nodes and 5𝑀 edges has a complete
graph of 500 nodes. In general, ER-graphs have an almost uniform
degree-distribution while BA-graphs have a skew in it. We use

Table 4: Types of reachability queries in the experiments.

Name Query Name Query
𝑄1 (𝑎 ◦ 𝑏)+ 𝑄2 𝑎+

𝑄3 𝑎 ◦ 𝑏+ 𝑄4 𝑎 ◦ 𝑏+ ◦ 𝑐
𝑄5 𝑎+ ◦ 𝑏+ 𝑄6 𝑎 ◦ 𝑏+ ◦ 𝑐+

JGraphT [31] to generate ER- and BA-graphs in our experiments.
The method to assign labels to edges in synthetic graphs is the same
as the one used for real-world graphs.

Query type. We use the six query types shown in Table 4, where
𝑎, 𝑏 and 𝑐 represent edge labels. The query types𝑄1 and𝑄2 are the
main query types that can be directly supported by the RLC index,
i.e., using Algorithm1. These two types of queries are used in the
experiments where we compare query time of the RLC index with
baseline solutions (Section 5.1), and analyzing the characteristic
of the index using synthetic graphs (Section 5.2). The other types
of queries are additionally included in the experiments of system

9

comparisons (Section 5.3), and the goal is to demonstrate that the
RLC index can be used to speed up the processing of a wide range
of query types appearing in real-world query logs, e.g., Wikidata
Query Logs [11]. The way we support 𝑄3, 𝑄4, 𝑄5, and 𝑄6 in Table
4 is to use BiBfs with the RLC index. In general, for vertex pairs
visited by BiBfs, the RLC index is used to check if the true answer
can be returned, otherwise BiBfs will continue searching.

Query generation. For each real-word graph, we generate two
query sets for 𝑄1 and 𝑄2 respectively, and each query set contains
1000 true-queries and 1000 false-queries. We explain the method for
query generation as follows. We randomly select a source vertex 𝑠
and a target vertex 𝑡 , and also randomly choose a label constraint
𝐿+. Then a bidirectional breadth-first search is conducted to test
whether 𝑠 reaches 𝑡 under the constraint of 𝐿+. If the test returns
𝑡𝑟𝑢𝑒 , we add (𝑠, 𝑡, 𝐿+, 𝑡𝑟𝑢𝑒) to the true-query set, otherwise we add
it into the false-query set. After that, we randomly select another
(𝑠, 𝑡, 𝐿+), and repeat the above procedure until the query set has
1000 true-queries and 1000 false-queries.

Implementation and Setting. Our implementation is in Java 11,
including baseline solutions and the RLC index. The source codes
are available online TODO: to be added, which includes every
detail of the experiments, e.g., datasets, query sets, method for query
generation, etc. We run experiments on a machine with 8 virtual
CPUs of Intel(R) Xeon(R) 2.40GHz, and 128GBmain memory, where
the heap size of JVM is configured to be 120GB

5.1 Performance on Real-World Graphs
In this section, we analyze the performance of the RLC index on
real-world graphs. We compare the RLC index with ETC in terms
of indexing time and index size, and with BFS and Bi-BFS in terms
of query time. Each query set for each graph contains 1000 true-
queries or 1000 false-queries of query types Q1 or Q2. The RLC index
and ETC are built with 𝑘 = 2 for each graph. The experimental
results are presented in Fig. 3 and 4.

Indexing time. Building ETC cannot be completed in 24 hours for
real-world graphs, as demonstrated in Fig.3 (a), with the exception
of the AD graph (the smallest), which takes around 30 minutes.
On the other hand, the RLC index can be efficiently built, i.e., the
indexing time for the first 10 graphs is at most 1 hour. The last
three graphs, i.e., the SO graph, the LJ graph, and the WF graph
are more challenging than the others, not only because they more
vertices and edges, but also because they a larger number of loops
and triangles, as shown in Table 3. The SO graph has the longest
indexing time due to its highly dense and cyclic character, i.e., it
has 15𝑀 loops and 114𝑀 triangles. Although the WF graph has
much fewer loops than the SO graph, it contains 30𝐵 triangles.
Consequently, the indexing time of the WF graph is at the same
order of magnitude as the one of the SO graph. While it has more
vertices and triangles than the SO graph, the LJ graph requires
a lower indexing time. As a direction comparison, the RLC index
for the AD graph can be built in 0.7s, leading to a four-orders-of-
magnitude improvement over ETC.

Index size. The Fig. 3 (b) shows the size of the RLC index for real-
world graphs. The size of ETC for the AD graph (the smallest) takes
up around 6GB. The RLC index, on the other hand, requires much

less space. Our general observation is that the graphs that require
more indexing time also leads to a larger index size. In addition,
the number of vertices also has an impact on index size, e.g., the
RLC index of the TW graph takes less time to build than the RLC
index of the EP graph, but the RLC index of the TW graph takes
up more space. Interestingly, the SO graph, requiring the longest
indexing time, has an index size of only 844MB, which is smaller
than the index size of the PR graph. However, the PR graph is much
less cyclic and requires much less time to build the RLC index than
the SO graph. This demonstrates that the indexing algorithm with
pruning rules can effectively eliminate redundant index entries that
are highly occurring in the case of a dense and cyclic graph. When
compared to ETC, the size of the RLC index the AD graph is only
1.9 MB, which is a four-orders-of-magnitude improvement.

Query time. Query execution using BFS times out for the true-
queries on both the SO graph and the WF graph, and for the false
queries of type𝑄1 on the WF graph. In addition, we only report the
query time of ETC for the AD graph as ETC cannot be built for all
the other graphs. As demonstrated in Fig. 4, the RLC index shows a
up to six- and four-orders-of-magnitude improvement against BFS
and Bi-BFS, respectively, and is even slightly faster than ETC on
the AD graph. More importantly, the query time of the RLC index
remains almost steady, and the average time for each query is at
the level of 1 microsecond, except for the WF graph (the largest) for
which around 2 microseconds. We also observe that queries of type
𝑄1 are slightly more difficult to process using an online traversal
(BFS or BiBFS) than ones of type 𝑄2, especially for true-queries on
dense and cyclic graphs, such as the SO graph, the LJ graph, and
the WF graph. This is because evaluating 𝑄1 queries might require
traversing small cycles more than once, which is not necessary for
processing 𝑄2 queries. In addition, false-queries are less expensive
to process than true-queries as graph traversal can immediately
halt if none of the outgoing edges has the desired label.

5.2 Impact of Graph Characteristics
In this section, we focus on analyzing the performance of the RLC
index on synthetic graphs with different characteristics, namely
average degree, label set size, and number of vertices. The input
parameter 𝑘 is set to 2 for all the experiments except the one in
Section 5.2.3, where we analyze the RLC index with different 𝑘 . The
synthetic graphs included in these experiments are ER-graphs and
BA-graphs. There are two query sets for each graph containing
1000 true-queries and 1000 false-queries respectively, which are
referred to as 𝐸𝑅.𝑇 and 𝐸𝑅.𝐹 for EA-graph, and 𝐵𝐴.𝑇 and 𝐵𝐴.𝐹 for
EA-graph. Each query in a query set is of type Q1 or Q2.

5.2.1 Impact of average degree and label set size. In this experiment,
we use BA-graphs and EA-graphs with 1 million vertices, and we
vary the average degree 𝑑 in (2, 3, 4, 5), and label set size |L| in
(8, 12, 16, 20, 24, 28, 32, 36), e.g., a graph with 𝑑 = 5 and |L| = 16
has 1𝑀 vertices, 5𝑀 edges, and 16 distinct edge labels. We aim at
analyzing indexing time, index size, and query time of the RLC index
as we increase of average degree and label set size. The experimental
results for ER-graphs and BA-graphs are reported in Fig. 5 and Fig.
6, respectively. We discuss the results below.

Indexing time. We observe that the indexing time for both ER-
graphs and BA-graphs with a fixed 𝑑 increases as |L| increases. This

10

is because |L| affects indexing time complexity discussed in Section
4.5. More precisely, as |𝐿𝑎𝑏 | increases, the number of possible mini-
mum repeats increases, requiring more time for the kernel-search
phase of KBS in the indexing algorithm to traverse the graph and
generate potential kernel candidates, resulting in more kernel-BFS
execution. Furthermore, because there are more edges to traverse,
the indexing time for both ER-graphs and BA-graphs with a fixed
|L| increases as 𝑑 increases.

Index size. As illustrated in Fig. 5 and 6, an increase in average
degree 𝑑 can result in a larger index size for both ER-graphs and
BA-graphs. The fundamental reason for this is that a vertex 𝑠 can
reach a vertex 𝑡 through more paths, leading to a higher number
of minimum repeats being recorded. As the size of the label set
grows, new behaviors emerge in terms of index size. Specifically,
the increase is negligible for ER-graphs with a smaller 𝑑 , e.g., 2,
and becomes more noticeable for ER-graphs with a larger 𝑑 , e.g., 5.
For any 𝑑 , however, we see a noticeable increase in index size with
the growth in |L| for BA-graphs. This is due to the fact that a BA-
graph comprises a complete graph, and vertices inside the complete
graph have higher degrees, consequently KBS executed from such
vertices can create more index entries as |L| grows, as it can reach
other vertices through paths with more distinct minimum repeats.
However, because of the uniform degree distribution, the increase
in the number of minimum repeats of paths from a vertex 𝑠 to a
vertex 𝑡 due to an increase in |L| is not significant for ER-graphs
when 𝑑 is small, but the corresponding impact becomes stronger
when 𝑑 is bigger.

Query time.We observe in Fig. 5 and 6 that for both ER-graphs
and BA-graphs, the impact of 𝑑 on query time is negligible. How-
ever, the growth of |L| has a different impact on query time. More
precisely, when |L| rises, the execution time of both true- and false-
queries for ER-graphs remains steady. When it comes to BA-graphs,
increasing |L| can lead to a minor boost in true-query execution
time but has no impact on false query execution time. This can
be explained by the fact that the vertices in the complete graph
of a BA-graph can reach (or be reachable from) much more ver-
tices than the vertices outside the complete graph in the BA-graph,
which can lead to a skew in the distribution of vertices in index
entries, i.e., many index entries have the same vertex. Furthermore,
when |L| grows, the number of minimum repeats also increases.
Therefore, the skew is higher. As a result, processing true-queries
will encounter situations where the query algorithm searches for a
particular minimum repeat in a significant number of index entries
with the same vertex. However, for false-queries, the query result
can be returned instantly if there are no index entries with the same
vertex.

5.2.2 Scalability. In this experiment, we use BA-graphs and EA-
graphs with average degree 5, 16 edge labels, and vary the number
of vertices in (125𝐾, 250𝐾, 500𝐾, 1𝑀, 2𝑀). The goal is to analyze the
scalability of the RLC index in terms of |𝑉 |. The results of indexing
time, index size, and query time for both ER-graphs and BA-graphs
are reported in Fig. 7.

Indexing time and index size. Our overall observation is that
both indexing time and index size grow with the increase of the
number of vertices in graphs, and the increasing rate is gradually
decreasing. This can be understood as follows. Graphs with more

vertices require more KBS iterations, which increases indexing
time and also the number of index entries. The number of minimal
repeats, on the other hand, does not increase as quickly as the
growth of the number of vertices since it is mostly influenced by
the average degree and label set size. Therefore, the increasing rate
of indexing time and index size of ER-graphs gradually decreases.
However, the degree skewing in BA-graphswill cause the number of
minimum repeats to keep growing with the increase of the number
of vertices, which will have an impact on the growth of indexing
time and index size with the number of vertices. It is also worth
noting that indexing BA-graphs is more expensive than indexing
ER-graphs, because the presence of complete graphs makes BA-
graphs more challenging to process.

Query time. In Fig. 7, for both ER-graphs and BA-graphs, we
observe the phenomenon that query time increases as the number
of vertices grows but the increase rate is slowing down, which
is similar to indexing time and index size discussed above. In ad-
dition, for BA-graphs, true-query time is higher than false-query
time. However, we see the opposite for ER-graphs. This can also
be observed in Fig 5 and Fig 6, where the y-axis has the same scale.
We discuss the reason as follows. Given a query (𝑠, 𝑡, 𝐿+). When a
graph has a uniform distribution in vertex degree, the index entries
(𝑣,𝑚𝑟) in bothL𝑜𝑢𝑡 (𝑠) andL𝑖𝑛 (𝑡) also have a uniform distribution
in terms of 𝑣 . Thus the query algorithm (based on merge join) tends
to perform an exhaustive search in L𝑜𝑢𝑡 (𝑠) and L𝑖𝑛 (𝑡) to find in-
dex entries with the same vertex 𝑣 , which results in false-queries
taking longer time to execute than true-queries. However, when the
distribution of vertex degree is skewed, the index entries inL𝑜𝑢𝑡 (𝑠)
andL𝑖𝑛 (𝑡) can be dominated by a few vertices, e.g., a vertex𝑢 in the
complete graph of a BA-graph. Furthermore, as there can exist more
paths from 𝑢 to 𝑠 or 𝑢 to 𝑡 , the number of index entries with 𝑢 can
be relatively large because of distinct minimum repeats. Given this,
the query algorithm can perform a faster search for false-queries
than true-queries, because the number of distinct vertices in both
L𝑜𝑢𝑡 (𝑠) and L𝑖𝑛 (𝑡) is not large. The query algorithm, on the other
hand, needs to select a specific𝑚𝑟 among index entries with vertex
𝑢 of a high degree, which takes more time.

5.2.3 Impact of 𝑘 . In this experiment, we aim at analyzing the
impact of 𝑘 on the index. We use a BA-graph and a EA-graph with
125𝐾 vertices, average degree 5, 16 edge labels, and we build the
RLC index for the BA-graph and the EA-graph with 𝑘 in (2, 3, 4). In
addition, for each graph, we evaluate each query set using the three
different indices built with the three different 𝑘 values. The results
of indexing time, index size, and query time are reported in Fig. 8.

Overall results. For both types of synthetic graphs, we notice
that indexing time and index size rise as 𝑘 grows. The fundamental
reason is that as 𝑘 increases, the number of possible minimum
repeats increases exponentially, as discussed in Section 4.5. As a
result, the indexing algorithm needs to search for and keep record
of more minimum repeats. We also observe the query time increases
when 𝑘 grows. This is mainly due to a larger index size since query
time complexity is linear with the number of index entries. It’s
also worth noting that an increase in 𝑘 has a greater influence on
BA-graph true-queries than its false-queries, and on ER-graph false-
queries than its true-queries. The reason for this is that true-queries
on BA-graphs (or false-queries on ER-graphs) take longer to process

11

d=2 d=3 d=4 d=5

8 12 16 20 24 28 32 36
Label Set Size

1

2

In
de

xi
ng

 T
im

e
(s

) ×102 Indexing Time

8 12 16 20 24 28 32 36
Label Set Size

3

4

5

In
de

x
Si

ze
 (M

B)

×102 Indexing Size

8 12 16 20 24 28 32 36
Label Set Size

0.00

0.25

0.50

0.75

1.00

Ex
ec

ut
io

n
Ti

m
e

(u
s) ×103 True Queries

8 12 16 20 24 28 32 36
Label Set Size

0.00

0.25

0.50

0.75

1.00

Ex
ec

ut
io

n
Ti

m
e

(u
s) ×103 False Queries

Figure 5: Indexing time, index size, and execution time of 1000 true-queries and 1000 false-queries for ER-graphs with 1M
vertices, and varying average degree 𝑑 and label set size.

d=2 d=3 d=4 d=5

8 12 16 20 24 28 32 36
Label Set Size

0.5

1.0

1.5

In
de

xi
ng

 T
im

e
(s

) ×103 Indexing Time

8 12 16 20 24 28 32 36
Label Set Size

4

6

8

In
de

x
Si

ze
 (M

B)

×102 Indexing Size

8 12 16 20 24 28 32 36
Label Set Size

0.00

0.25

0.50

0.75

1.00

Ex
ec

ut
io

n
Ti

m
e

(u
s) ×103 True Queries

8 12 16 20 24 28 32 36
Label Set Size

0.00

0.25

0.50

0.75

1.00

Ex
ec

ut
io

n
Ti

m
e

(u
s) ×103 False Queries

Figure 6: Indexing time, index size, and execution time of 1000-true queries and 1000-false queries for BA-graphs with 1M
vertices, and various average degree 𝑑 and label set size.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Number of Vertices 1e6

102

104

In
de

xi
ng

 T
im

e
(s

) Indexing Time
ER BA

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Number of Vertices 1e6

102

103

In
de

x
Si

ze
 (M

B)

Index Size

ER BA

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Number of Vertices 1e6

2

3

4

5
Ex

ec
ut

io
n

Ti
m

e
(u

s) ×102 Query Time

ER.T
ER.F
BA.T
BA.F

Figure 7: Indexing time, index size, and execution time of 1000-true queries and 1000-false queries for synthetic graphs with
average degree 5, 16 edge labels, and varying number of vertices.

2 3 4
k

102

103

104

In
de

xi
ng

 T
im

e
(s

) Indexing Time
ER
BA

2 3 4
k

105

106

In
de

x
Si

ze
 (M

B)

Index Size
ER
BA

2 3 4
k

0.0
0.5
1.0
1.5
2.0

Ex
ec

ut
io

n
Ti

m
e

(u
s) ×103 Query Time

ER.T
ER.F
BA.T
BA.F

Figure 8: Evaluation of the RLC index with various 𝑘 us-
ing BA-graphs and EA-graphs, and workloads of 1000-true
queries and 1000-false queries, respectively.

than false-queries on BA-graphs (or true-queries on ER-graphs).
Furthermore, increasing 𝑘 can amplify the effect by causing the
exponential rise of minimal repeats.

5.3 Speedup on graph engines
TODO: graphs: WN and SO

TODO: The discussion will focus on the following two
arguments: (1) for Q1 and Q2, index can speed up query
execution; (2) meanwhile, index can also speed up other
types of queries

TODO: We will not discuss the performance differences
between these systems.

TODO: breaking points to be added.

6 RELATEDWORK
6.1 Plain Reachability
Given an unlabeled graph 𝐺 = (𝑉 , 𝐸) and a pair of vertices (𝑠, 𝑡),
a plain reachability query asks whether there exists a path from 𝑠
to 𝑡 . The existing approaches lie between two extremes, i.e., online

12

Table 5: Speed-up of the RLC index on the WN graph.

Anon.
Sys. Q1 Q2 Q3 Q4 Q5 Q6

Sys1 2.4e+3 6.11e+3 2.92e+3 5.7e+3 2.23e+4 1.6e+4
Sys2 3.59e+4 6.47e+4 3.13e+4 9.62e+3 1.74e+5 1.93e+5
Sys3 - 5.73e+2 - - - -

Table 6: Speed-up of the RLC index on the SO graph.

Anon.
Sys. Q1 Q2 Q3 Q4 Q5 Q6

Sys1 6.13e+5 1.63e+5 4.95e+6 6.11e+4 − −
Sys2 - 9.67e+6 2.19e+6 1.74e+4 7.33e+6 3.52e+4
Sys3

traversal and transitive closure, and try to find a good balance be-
tween query time, indexing time and index size. We briefly review
the literature, whereas comprehensive surveys can be found in
[10, 37, 47]. They mainly fall into two main categories [37, 43]: (1)
Index-Only approaches; (2) Index+Graph approaches. The former
can answer queries using only the index, while the latter requires
online graph traversal, which can be guided by auxiliary data, i.e.,
partial index, and can deal with large graphs. The Index-Only ap-
proaches can be further classified into two sub-categories: (1.1)
cover-based approaches, which use simple graph structures to cover
an input graph, such as Chain Cover [13, 22], Tree Cover [5], and
Path-Tree Cover [26]; (1.2) hop-based approaches, which decom-
pose the path between a reachable pair of vertices into sub-paths
passing through intermediate vertices, such as 2-Hop labeling [16]
and 3-Hop labeling [25]. As the minimal 2-Hop cover problem is
NP-hard, various approaches have been proposed for improving the
index construction of 2-Hop labeling, e.g., TF-Label [15], HL [24],
DL [24], and TOL [48]. The Index+Graph approaches can fall into
two sub-categories: (2.1) position-based approaches, e.g., Tree+SSPI
[12],GRIPP [39],GRAIL [46], and Ferrari [36]; (2.2) set-containment-
based approaches, e.g., IP [43] and BFL [37].

RLC queries are different from plain reachability queries because
they are evaluated on labeled graphs and due to additional recur-
sive label-concatenated constraint. Therefore, the approaches used
to evaluate plain reachability queries are not applicable to RLC
queries. More precisely, indexing techniques for plain reachability
queries only record information about graph structure but ignore
information of edge labels.

6.2 Recursive Label-Alternated Queries
Recursive label-alternated queries are reachability queries with a
path constraint that is based on alternation of edge labels (instead
of concatenation as in our work), which are known as LCR queries
in the literature. LCR queries have been extensively studied in the
last decade. We provide an overview for this line of works below.

Jin et. al [23] presented the first result on LCR queries. To com-
press the generalized transitive closure that records reachable pairs
and sets of path-labels, the authors proposed sufficient label sets
and a spanning tree with partial transitive closure. The main idea is
to record only the minimal label sets for paths with non-tree edges
as the starting and ending edge in a partial transitive closure, then
the generalized transitive closure can be recovered by traversing
the spanning tree and looking up the partial transitive closure. The
Zou et. al [49] method finds all strongly connected components
(SCCs) in an input graph, and replaces each SCC with a bipartite
graph to obtain an edge labeled DAG. Zou et. al proposed an ef-
ficient algorithm to compute generalized transitive closures for
the DAG using its topological order. To handle a large graph, the

algorithm is applied to graph partitions instead of SCCs. Valstar et.
al [40] proposed a landmark-based index. In a nutshell, the method
computes the generalized transitive closure for a subset of vertices
called landmarks that have the highest total degree, and applies
online BFS to answer LCR queries that can be accelerated by hitting
landmarks. The method is also optimized by adding a fixed number
of index entries for non-landmark vertices, such that the search
space for negative queries can be pruned. The state-of-the-art index-
ing techniques for LCR queries are the Peng et. al [35] method and
the Chen et. al [14] method. Peng et. al [35] proposes the LC 2-hop
labeling, which extends 2-hop labeling framework through adding
minimal sets of path-labels for each entry in the 2-hop labeling.
Chen et. al [14] proposes a recursive method to handle LCR queries,
where an input graph is recursively decomposed into spanning
trees and graph summaries, and LCR queries are decomposed into
sub-queries evaluated using spanning trees and graph summaries.

LCR queries are similar to RLC queries in the sense that path-label
information is mandatory to check reachability. Their major differ-
ence is on the type of the regular expression given in queries. The
expression in LCR queries is an alternation of edge labels, while the
one in RLC queries is a concatenation of edge labels. The completely
different path constraint makes LCR indices infeasible for process-
ing RLC queries. More precisely, LCR indices store label sets for a
pair of vertices (𝑠, 𝑡), such a set is not sufficient to answer an RLC
query with (𝑠, 𝑡) because the order and the number of occurrences
of edge labels are missing, i.e., the stored index entries are label
sets, instead of label sequences required by processing RLC queries.
The difference in path constraint also makes indexing algorithms
for LCR queries and RLC queries fundamentally different. More
precisely, for an LCR indexing algorithm, it is sufficient to traverse
any cycle in a graph only once. Then based on a snapshot of an
LCR index, any further traversal along the cycle can be skipped
because the reachability information related to the cycle under
an alternation-based path constraint has already been recorded.
However, it is not true for the case of RLC queries, where a cycle
(particularly a loop) might need to be traversed multiple times de-
pending on label sequences to be checked along paths. Therefore,
indexing approaches for LCR queries are not applicable to indexing
RLC queries. In our work, we show how to properly adapt the suc-
cessful 2-hop labeling framework [6, 16] to the design and efficient
deployment of RLC Index.

6.3 Regular Reachability Queries
Regular reachability queries correspond to reachability queries with
path constraints specified using regular expressions, i.e., checking
the existence of a path based on the regular expressions. Under
the simple path semantics, it is NP-complete to evaluate regular
reachability queries [30]. By restricting regular expressions or graph

13

instances, there exist tractable cases under this semantics [8, 30].
When it comes to the arbitrary path semantics, regular reachability
queries can be processed by using automata-based techniques [9,
44], bi-directional BFS [18], partial evaluation for distributed graphs
[19], incremental approach for streaming graphs [33, 34]. Compared
to these solutions, we focus on designing an index-based solution
to handle reachability queries with a concatenation of edge labels
constraint under the arbitrary path semantics, since such queries are
computationally hard to process due to in-depth graph traversals.
To the best of our knowledge, our work is the first of its kind
focusing on the design of a reachability index for such queries.

7 CONCLUSION
TODO: to be added ...

TODO: parallelization of indexing, billion-scale graphs
...

REFERENCES
[1] [n.d.]. Apache Jena. https://jena.apache.org.
[2] [n.d.]. Graph Query Language GQL Standard. https://www.gqlstandards.org/.
[3] [n.d.]. Neo4j. http://www.opencypher.org.
[4] [n.d.]. Virtuoso. http://vos.openlinksw.com/owiki/wiki/VOS.
[5] R. Agrawal, A. Borgida, and H. V. Jagadish. 1989. Efficient Management of

Transitive Relationships in Large Data and Knowledge Bases. In Proceedings of

the 1989 ACM SIGMOD International Conference on Management of Data (Portland,
Oregon, USA) (SIGMOD ’89). Association for Computing Machinery, New York,
NY, USA, 253–262. https://doi.org/10.1145/67544.66950

[6] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast Exact Shortest-Path
Distance Queries on Large Networks by Pruned Landmark Labeling. In Proceed-

ings of the 2013 ACM SIGMOD International Conference on Management of Data

(New York, New York, USA) (SIGMOD ’13). Association for ComputingMachinery,
New York, NY, USA, 349–360. https://doi.org/10.1145/2463676.2465315

[7] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and
Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5, Article 68 (Sept. 2017), 40 pages. https:
//doi.org/10.1145/3104031

[8] Guillaume Bagan, Angela Bonifati, and Benoit Groz. 2013. A Trichotomy for
Regular Simple Path Queries on Graphs. In Proceedings of the 32nd ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems (New York, New
York, USA) (PODS ’13). Association for Computing Machinery, New York, NY,
USA, 261–272. https://doi.org/10.1145/2463664.2467795

[9] Pablo Barceló Baeza. 2013. Querying Graph Databases. In Proceedings of the 32nd

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (New
York, New York, USA) (PODS ’13). Association for Computing Machinery, New
York, NY, USA, 175–188. https://doi.org/10.1145/2463664.2465216

[10] Angela Bonifati, George Fletcher, Hannes Voigt, Nikolay Yakovets, and H. V.
Jagadish. 2018. Querying Graphs. Morgan & Claypool Publishers.

[11] Angela Bonifati, Wim Martens, and Thomas Timm. 2019. Navigating the Maze
of Wikidata Query Logs. In The World Wide Web Conference (San Francisco, CA,
USA) (WWW ’19). Association for Computing Machinery, New York, NY, USA,
127–138. https://doi.org/10.1145/3308558.3313472

[12] Li Chen, Amarnath Gupta, and M. Erdem Kurul. 2005. Stack-Based Algorithms
for Pattern Matching on DAGs. In Proceedings of the 31st International Conference

on Very Large Data Bases (Trondheim, Norway) (VLDB ’05). VLDB Endowment,
493–504.

[13] Y. Chen and Y. Chen. 2008. An Efficient Algorithm for Answering Graph Reacha-
bility Queries. In 2008 IEEE 24th International Conference on Data Engineering.
893–902. https://doi.org/10.1109/ICDE.2008.4497498

[14] Yangjun Chen and Gagandeep Singh. 2021. Graph Indexing for Efficient Eval-
uation of Label-Constrained Reachability Queries. ACM Trans. Database Syst.

(2021).
[15] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. 2013. TF-

Label: A Topological-Folding Labeling Scheme for Reachability Querying in a
Large Graph. In Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data (New York, New York, USA) (SIGMOD ’13). Association for
Computing Machinery, New York, NY, USA, 193–204. https://doi.org/10.1145/
2463676.2465286

[16] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability
and Distance Queries via 2-Hop Labels. In Proceedings of the Thirteenth Annual

ACM-SIAM Symposium on Discrete Algorithms (San Francisco, California) (SODA
’02). Society for Industrial and Applied Mathematics, USA, 937–946.

[17] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2019. TigerGraph: A Native
MPP Graph Database. ArXiv abs/1901.08248 (2019).

[18] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. 2011. Adding
regular expressions to graph reachability and pattern queries. In 2011 IEEE 27th

International Conference on Data Engineering. 39–50. https://doi.org/10.1109/
ICDE.2011.5767858

[19] Wenfei Fan, Xin Wang, and Yinghui Wu. 2012. Performance Guarantees for
Distributed Reachability Queries. Proc. VLDB Endow. 5, 11 (July 2012), 1304–1316.
https://doi.org/10.14778/2350229.2350248

[20] Haixun Wang, Hao He, Jun Yang, P. S. Yu, and J. X. Yu. 2006. Dual Labeling:
Answering Graph Reachability Queries in Constant Time. In 22nd International

Conference on Data Engineering (ICDE’06). 75–75. https://doi.org/10.1109/ICDE.
2006.53

[21] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt, Merijn
Verstraaten, and Hassan Chafi. 2015. PGX.D: a fast distributed graph processing
engine. In SC ’15: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. 1–12. https://doi.org/10.1145/
2807591.2807620

[22] H. V. Jagadish. 1990. A Compression Technique to Materialize Transitive Closure.
ACM Trans. Database Syst. 15, 4 (Dec. 1990), 558–598. https://doi.org/10.1145/
99935.99944

[23] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang. 2010. Com-
puting Label-Constraint Reachability in Graph Databases. In Proceedings of the

2010 ACM SIGMOD International Conference on Management of Data (Indianapo-
lis, Indiana, USA) (SIGMOD ’10). Association for Computing Machinery, New
York, NY, USA, 123–134. https://doi.org/10.1145/1807167.1807183

[24] Ruoming Jin and Guan Wang. 2013. Simple, Fast, and Scalable Reachability
Oracle. Proc. VLDB Endow. 6, 14 (Sept. 2013), 1978–1989. https://doi.org/10.
14778/2556549.2556578

[25] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3-HOP: A High-
Compression Indexing Scheme for Reachability Query. In Proceedings of the 2009

ACM SIGMOD International Conference on Management of Data (Providence,
Rhode Island, USA) (SIGMOD ’09). Association for Computing Machinery, New
York, NY, USA, 813–826. https://doi.org/10.1145/1559845.1559930

[26] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently An-
swering Reachability Queries on Very Large Directed Graphs. In Proceedings of

the 2008 ACM SIGMOD International Conference on Management of Data (Vancou-
ver, Canada) (SIGMOD ’08). Association for Computing Machinery, New York,
NY, USA, 595–608. https://doi.org/10.1145/1376616.1376677

[27] D. Knuth, James H. Morris, and V. Pratt. 1977. Fast Pattern Matching in Strings.
SIAM J. Comput. 6 (1977), 323–350.

[28] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In Proceedings

of the 22nd International Conference on World Wide Web (Rio de Janeiro, Brazil)
(WWW ’13 Companion). Association for Computing Machinery, New York, NY,
USA, 1343–1350. https://doi.org/10.1145/2487788.2488173

[29] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[30] A. O. Mendelzon and P. T. Wood. 1989. Finding Regular Simple Paths in Graph
Databases. In Proceedings of the 15th International Conference on Very Large Data

Bases (Amsterdam, The Netherlands) (VLDB ’89). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 185–193.

[31] DimitriosMichail, Joris Kinable, Barak Naveh, and John V. Sichi. 2020. JGraphT—A
Java Library for Graph Data Structures and Algorithms. ACM Trans. Math. Softw.

46, 2, Article 16 (may 2020), 29 pages. https://doi.org/10.1145/3381449
[32] Mark E. J. Newman. 2010. Networks: An Introduction. Oxford University Press.
[33] Anil Pacaci, Angela Bonifati, and M. Tamer Özsu. 2020. Regular Path Query

Evaluation on Streaming Graphs. In Proceedings of the 2020 ACM SIGMOD In-

ternational Conference on Management of Data (Portland, OR, USA) (SIGMOD

’20). Association for Computing Machinery, New York, NY, USA, 1415–1430.
https://doi.org/10.1145/3318464.3389733

[34] Anil Pacaci, Angela Bonifati, and M. Tamer Özsu. 2021. Evaluating Complex
Queries on Streaming Graphs. arXiv:2101.12305 [cs.DB]

[35] You Peng, Ying Zhang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2020. Answering
Billion-Scale Label-Constrained Reachability Queries within Microsecond. Proc.
VLDB Endow. 13, 6 (Feb. 2020), 812–825. https://doi.org/10.14778/3380750.3380753

[36] S. Seufert, A. Anand, S. Bedathur, and G. Weikum. 2013. FERRARI: Flexible
and efficient reachability range assignment for graph indexing. In 2013 IEEE

29th International Conference on Data Engineering (ICDE). 1009–1020. https:
//doi.org/10.1109/ICDE.2013.6544893

[37] J. Su, Q. Zhu, H. Wei, and J. X. Yu. 2017. Reachability Querying: Can It Be
Even Faster? IEEE Transactions on Knowledge and Data Engineering 29, 3 (2017),
683–697. https://doi.org/10.1109/TKDE.2016.2631160

[38] Vasileios Trigonakis, Jean-Pierre Lozi, Tomáš Faltín, Nicholas P. Roth, Iraklis
Psaroudakis, Arnaud Delamare, Vlad Haprian, Calin Iorgulescu, Petr Koupy, Jin-
soo Lee, Sungpack Hong, and Hassan Chafi. 2021. aDFS: An Almost Depth-First-
Search Distributed Graph-Querying System. In 2021 USENIX Annual Technical

Conference (USENIX ATC 21). USENIX Association, 209–224. https://www.usenix.
org/conference/atc21/presentation/trigonakis

14

https://jena.apache.org
https://www.gqlstandards.org/
http://www.opencypher.org
http://vos.openlinksw.com/owiki/wiki/VOS
https://doi.org/10.1145/67544.66950
https://doi.org/10.1145/2463676.2465315
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1145/2463664.2467795
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1109/ICDE.2008.4497498
https://doi.org/10.1145/2463676.2465286
https://doi.org/10.1145/2463676.2465286
https://doi.org/10.1109/ICDE.2011.5767858
https://doi.org/10.1109/ICDE.2011.5767858
https://doi.org/10.14778/2350229.2350248
https://doi.org/10.1109/ICDE.2006.53
https://doi.org/10.1109/ICDE.2006.53
https://doi.org/10.1145/2807591.2807620
https://doi.org/10.1145/2807591.2807620
https://doi.org/10.1145/99935.99944
https://doi.org/10.1145/99935.99944
https://doi.org/10.1145/1807167.1807183
https://doi.org/10.14778/2556549.2556578
https://doi.org/10.14778/2556549.2556578
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.1145/2487788.2488173
http://snap.stanford.edu/data
https://doi.org/10.1145/3381449
https://doi.org/10.1145/3318464.3389733
https://arxiv.org/abs/2101.12305
https://doi.org/10.14778/3380750.3380753
https://doi.org/10.1109/ICDE.2013.6544893
https://doi.org/10.1109/ICDE.2013.6544893
https://doi.org/10.1109/TKDE.2016.2631160
https://www.usenix.org/conference/atc21/presentation/trigonakis
https://www.usenix.org/conference/atc21/presentation/trigonakis

[39] Silke Trißl and Ulf Leser. 2007. Fast and Practical Indexing and Querying of Very
Large Graphs. In Proceedings of the 2007 ACM SIGMOD International Conference

on Management of Data (Beijing, China) (SIGMOD ’07). Association for Comput-
ing Machinery, New York, NY, USA, 845–856. https://doi.org/10.1145/1247480.
1247573

[40] Lucien D.J. Valstar, George H.L. Fletcher, and Yuichi Yoshida. 2017. Landmark
Indexing for Evaluation of Label-Constrained Reachability Queries. In Proceedings
of the 2017 ACM International Conference onManagement of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
345–358. https://doi.org/10.1145/3035918.3035955

[41] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: A Property Graph Query Language. In Proceedings of the Fourth

International Workshop on Graph Data Management Experiences and Systems (Red-
wood Shores, California) (GRADES ’16). Association for Computing Machinery,
New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2960414.2960421

[42] R. R. Veloso, Loïc Cerf, W. Meira, and Mohammed J. Zaki. 2014. Reachability
Queries in Very Large Graphs: A Fast Refined Online Search Approach. In EDBT.

[43] Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2014. Reachability Querying:
An Independent Permutation Labeling Approach. Proc. VLDB Endow. 7, 12 (Aug.
2014), 1191–1202. https://doi.org/10.14778/2732977.2732992

[44] Peter T. Wood. 2012. Query Languages for Graph Databases. SIGMOD Rec. 41, 1
(April 2012), 50–60. https://doi.org/10.1145/2206869.2206879

[45] Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast and
Scalable Reachability Queries on Graphs by Pruned Labeling with Landmarks and
Paths. In Proceedings of the 22nd ACM International Conference on Information and

Knowledge Management (San Francisco, California, USA) (CIKM ’13). Association
for Computing Machinery, New York, NY, USA, 1601–1606. https://doi.org/10.
1145/2505515.2505724

[46] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2010. GRAIL: Scalable
Reachability Index for Large Graphs. Proc. VLDB Endow. 3, 1–2 (Sept. 2010),
276–284. https://doi.org/10.14778/1920841.1920879

[47] Jeffrey Xu Yu and Jiefeng Cheng. 2010. Graph reachability queries: A survey. In
Managing and Mining Graph Data. Springer, 181–215.

[48] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. 2014. Reachability
Queries on Large Dynamic Graphs: A Total Order Approach. In Proceedings of

the 2014 ACM International Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,
1323–1334. https://doi.org/10.1145/2588555.2612181

[49] Lei Zou, Kun Xu, Jeffrey Xu Yu, Lei Chen, Yanghua Xiao, and Dongyan Zhao.
2014. Efficient processing of label-constraint reachability queries in large graphs.
Information Systems 40 (2014), 47–66. https://doi.org/10.1016/j.is.2013.10.003

15

https://doi.org/10.1145/1247480.1247573
https://doi.org/10.1145/1247480.1247573
https://doi.org/10.1145/3035918.3035955
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.14778/2732977.2732992
https://doi.org/10.1145/2206869.2206879
https://doi.org/10.1145/2505515.2505724
https://doi.org/10.1145/2505515.2505724
https://doi.org/10.14778/1920841.1920879
https://doi.org/10.1145/2588555.2612181
https://doi.org/10.1016/j.is.2013.10.003

	Abstract
	1 INTRODUCTION
	2 PROBLEM STATEMENT
	2.1 Minimum Repeats
	2.2 RLC Query
	2.3 Indexing Problem

	3 Kernel-based search
	4 RLC Index
	4.1 Overarching Idea
	4.2 Query Algorithm
	4.3 Indexing Algorithm
	4.4 Correct and Condensed RLC Index
	4.5 Complexity Analysis

	5 Experimental Evaluation
	5.1 Performance on Real-World Graphs
	5.2 Impact of Graph Characteristics
	5.3 Speedup on graph engines

	6 RELATED WORK
	6.1 Plain Reachability
	6.2 Recursive Label-Alternated Queries
	6.3 Regular Reachability Queries

	7 Conclusion
	References

