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Data sketches are approximate succinct summaries of long data streams. They are widely used for processing
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1 INTRODUCTION

Motivation. Data sketching algorithms, or sketches for short [17], have become an indispens-
able tool for high-speed computations over massive datasets in recent years. Their applications
include a variety of analytics and machine learning use cases, e.g., data aggregation [10, 14], graph
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Fig. 1. Stream processing architectures.

mining [16], anomaly (e.g., intrusion) detection [34], real-time data analytics [21], and online clas-
sification [31].

Sketches are designed for stream settings in which each data item is only processed once. A com-
mon use case is data analytics, powered by analytics platforms like Druid [21]. A typical stream
processing pipeline for data analytics is illustrated in Figure 1(a). The stream consists of real-time
events from various sources, such as web page clicks, apps being run on mobile devices, social
media posts, and reports from IoT devices. The data is typically stored for archival purposes, and
also summarised by data sketches to allow real-time queries. Another use case is network manage-
ment [17], where statistics are gathered over a stream of network packets.

A sketch data structure is essentially a succinct (sublinear) summary of a stream that approxi-
mates a specific query, for instance, unique element count, quantile values, or frequent items. The
approximation is typically very accurate—the error drops fast with the stream size [17].

Practical sketch implementations have recently emerged in toolkits [4] and data analytics plat-
forms (e.g., PowerDrill [26], Druid [21], Hillview [7], and Presto [3]). However, these implemen-
tations are not thread-safe, allowing neither parallel data ingestion nor concurrent queries and
updates; concurrent use is prone to exceptions and gross estimation errors. Applications using
these libraries are therefore required to explicitly protect all sketch API calls by locks [5, 8]. As a
consequence of this limitation, typical deployments create sketches in epochs, where queries are
referred to the sketch created in the previous epoch while new stream elements are directed to a
new sketch, as illustrated in Figure 1(b). This practice leads to stale query results and thus loses
the real-time quality of the system.

Our approach. We present a generic approach to parallelising data sketches efficiently while
bounding the error that such a parallel implementation might induce. Our goal is to enable simul-
taneous queries and updates to the same sketch from multiple threads. Our solution is carefully
designed to do so without slowing down operations as a result of synchronisation. This is particu-
larly challenging, because sketch libraries are extremely fast, often processing tens of millions of
updates per second.

We capitalise on the well-known sketch mergeability property [17], which enables computing
a sketch over a stream by merging sketches over sub-streams. Previous works have exploited this
property for distributed stream processing (e.g., References [19, 26]), devising solutions with a
sequential bottleneck at the merge phase and where queries cannot be served before all updates
complete. In contrast, our method is based on shared memory and constantly propagates results
to a queryable sketch. Our solution architecture is illustrated in Figure 2. Multiple worker thread
buffer updates in local sketches and periodically merge them into a global sketch; queries access
the latter.
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Fig. 2. Concurrent sketches architecture.

Fig. 3. Scalability of DataSketches’ Θ sketch protected by a lock vs. our concurrent implementation.

We adaptively parallelise stream processing: for small streams, we forgo parallel ingestion as
it might introduce significant errors; but as the stream becomes large, we process it in parallel
using small thread-local sketches with continuous background propagation of local results to the
common (queryable) sketch.

We instantiate our generic algorithm with a KMV Θ sketch [14], which estimates the number
of unique elements in a stream; a popular sketch from the open-source Apache DataSketches li-
brary [4]. We have contributed our implementation back to the Apache DataSketches library [6].
Yet, we emphasise that our design is generic and applicable to additional sketches. We briefly dis-
cuss the applicability of our algorithm to additional popular sketches, such as Quantiles, CountMin,
and HyperLogLog, where we discuss the generic algorithm (cf. Section 5).

Figure 3 compares the ingestion throughput of our concurrent Θ sketch to that of a lock-
protected sequential sketch, on multi-core hardware. As expected, the trivial solution does not
scale, whereas our algorithm scales linearly.

Error analysis. Concurrency might induce an error, and one of the main challenges we address
is analysing this error. To begin with, our concurrent sketch is a concurrent data structure, and we
need to specify its semantics. We do so using a flavour of relaxed consistency, similar to References
[11, 25, 32], which allows operations to “overtake” some other operations. Thus, a query may
return a result that reflects all but a bounded number of the updates that precede it. While relaxed
semantics were previously used for data structures such as stacks [25] and priority queues [12,
29], we believe that they are a natural fit for data sketches. This is because sketches are typically
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used to summarise streams that arise from multiple real-world sources and are collected over a
network with variable delays, and so even if the sketch ensures strict semantics, queries might miss
some real-world events that occur before them. Additionally, sketches are inherently approximate.
Relaxing their semantics therefore “makes sense,” as long as it does not excessively increase the
expected error. If a stream is much longer than the relaxation bound, then indeed the error induced
by the relaxation is negligible. For instance, in a stream consisting of ten million events, missing a
hundred (or even a thousand) of them will not make a big impact.

Analytics platforms often use multiple sketches to capture different dimensions of the data. For
instance, they may count the number of unique users from each region in a different sketch. Typi-
cally, a handful of popular sketches account for most events, and others are updated less frequently.
Whereas the relaxation does not significantly affect the estimation in the popular sketches, since
the error allowed by the relaxation is additive, in less popular sub-streams, it may have a large
impact. This motivates our adaptive solution, which forgoes relaxing small streams altogether.

We show that under parallel ingestion, our algorithm satisfies relaxed consistency with a re-
laxation of up to 2Nb, where N is the number of worker threads and b is the buffer size of each
worker. In our example use case, N is 12 and b ranges between 1 and 5.

The proof involves some technical challenges. First, relaxed consistency is defined with regards
to a deterministic specification, whereas sketches are randomised. We therefore first de-randomise
the sketch’s behaviour by delegating the random coin flips to an oracle. We can then relax the
resulting sequential specification. Next, because our concurrent sketch is used within randomised
algorithms, it is not enough to prove its linearisability. Rather, we prove that our generic concurrent
algorithm instantiated with sequential sketch S satisfies strong linearisability [24] with regards to a
relaxed sequential specification of the de-randomised S . We note, however, that supporting strong
linearisability did not incur additional costs, nor did it impact the relaxation; we were able to prove
that our original design was strongly linearisable.

We then analyse the error for two types of relaxed sketches under random coin flips, with an
adversarial scheduler that may delay operations in a way that maximises the error. First, we con-
sider the Θ sketch. For this sketch, its relative standard error has been analysed, and we show
that our concurrent implementation’s error is coarsely bounded by twice that of the correspond-
ing sequential sketch. Second, we consider a family of probably approximately correct (PAC)

sketches—these are sketches that estimate some quantity with an error of at most ϵ with a proba-
bility of at least 1−δ . For an arbitrary PAC sketch estimating quantiles or counting unique elements,
we show that the error induced by its relaxation approaches that of the original, non-relaxed sketch
as the stream size tends to infinity.

Main contribution. In summary, this article tackles the problem of concurrent sketches, offers
a general efficient solution for it, and rigorously analyses this solution. While the article makes
use of many known techniques, it combines them in a novel way. The main technical challenges
we address are (1) devising a high-performance generic algorithm that supports real-time queries
concurrently with updates without inducing an excessive error; (2) proving the relaxed consistency
of the algorithm; and (3) bounding the error induced by the relaxation in both short and long
streams.

The article proceeds as follows: Section 2 lays out the model for our work and Section 3 provides
background on sequential sketches. In Section 4, we formulate a flavour of relaxed semantics ap-
propriate for data sketches. Section 5 presents our generic algorithm, and Section 6 proves strong
linearisability of our generic algorithm. Section 7 analyses error bounds for example sketches.
Section 8 empirically studies the Θ sketch’s performance and error with different stream sizes.
Section 9 concludes.
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2 MODEL

We consider a non-sequentially consistent shared memory model that enforces program order on
all variables and allows explicit definition of atomic variables as in Java [1] and C++ [15]. Practically
speaking, reads and writes of atomic variables are guarded by memory fences, which guarantee
that all writes executed before a write w to an atomic variable are visible to all reads that follow
(on any thread) a read r of the same atomic variable s.t. r occurs after w.

A thread takes steps according to a deterministic algorithm defined as a state machine, where
a step can access a shared memory variable, do local computations, and possibly return some
value. An execution of an algorithm is an alternating sequence of steps and states, where each step
follows some thread’s state machine. Algorithms implement objects supporting operations, such as
query and update. An operation’s execution consists of a series of steps, beginning with a special
invoke step and ending in a response step that may return a value. The history of an execution σ ,
denoted H (σ ), is its subsequence of operation invoke and response steps. In a sequential history,
each invocation is immediately followed by its response. The sequential specification (SeqSpec)

of an object is its set of allowed sequential histories.
A linearisation of a concurrent execution σ is a history H ∈SeqSpec such that (1) after adding

responses to some pending invocations in σ and removing others, H and σ consist of the same
invocations and responses (including parameters) and (2) H preserves the order between non-
overlapping operations in σ . Golab et al. [24] have shown that to ensure correct behaviour of
randomised algorithms under concurrency, one has to prove strong linearisability:

Definition 1 (Strong Linearisability). A function f mapping executions to histories is prefix pre-

serving if for every two executions σ ,σ ′ s.t. σ is a prefix of σ ′, f (σ ) is a prefix of f (σ ′).
An algorithm A is a strongly linearisable implementation of an object o if there is a prefix pre-

serving function f that maps every execution σ of A to a linearisation H of σ .

For example, executions of atomic variables are strongly linearisable.

3 BACKGROUND: SEQUENTIAL SKETCHES

A sketch S summarises a collection of elements { a1,a2, . . . ,an }, processed in some order given
as a stream A = a1,a2, . . . ,an . The desired summary is agnostic to the processing order, but the
underlying data structures may differ due to the order. Its API is:

S .init() initialises S to summarise the empty stream;
S .update(a) processes stream element a;
S .query(arд) returns the function estimated by the sketch over the stream processed thus far, e.g.,

the number of unique elements; takes an optional argument, e.g., the requested quantile.
S .merge(S ′) merges sketches S and S ′ into S ; i.e., if S initially summarised stream A and S ′ sum-

marised A′, then after this call, S summarises the concatenation of the two, A| |A′.

Example: Θ sketch. Our running example is a Θ sketch based on the K Minimum Values (KMV)

algorithm [14] given in Algorithm 1. It maintains a sampleSet and a parameter Θ that determines
which elements are added to the sample set. It uses a random hash function h whose outputs are
uniformly distributed in the range [0, 1], and Θ is always in the same range. An incoming stream
element is first hashed, and then the hash is compared to Θ. In case it is smaller, the value is added
to sampleSet. Otherwise, it is ignored.

Because the hash outputs are uniformly distributed, the expected proportion of values smaller
than Θ is Θ. Therefore, we can estimate the number of unique elements in the stream by dividing
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ALGORITHM 1: Θ sketch.
1: variables
2: sampleSet, init k 1’s � samples
3: Θ, init 1 � threshold
4: atomic est, init 0 � estimate
5: h, init random uniform hash function

6: procedure qery(arg)
7: return est
8: procedure update(arg)
9: if h(arg) ≥ Θ then return

10: add h(arg) to sampleSet

11: keep k smallest samples in sampleSet

12: Θ←max (sampleSet )
13: est ← ( |sampleSet| − 1) / Θ

14: procedure merge(S)
15: sampleSet← merge sampleSet and S .sampleSet
16: keep k smallest values in sampleSet
17: Θ←max (sampleSet)
18: est ← ( |sampleSet| − 1) / Θ

the number of (unique) stored samples by Θ (assuming that the random hash function is drawn
independently of the stream values).

KMV Θ sketches keep constant-size sample sets: They take a parameterk and keep thek smallest
hashes seen so far. Θ is 1 during the first k updates, and subsequently it is the hash of the largest
sample in the set. Once the sample set is full, every update that inserts a new element also removes
the largest one and updates Θ. This is implemented efficiently using a min-heap. The merge method
adds a batch of samples to sampleSet.

Accuracy. Today, sketches are used sequentially, so the entire stream is processed and then
S .query(arg) returns an estimate of the desired function on the entire stream. Accuracy is defined
in one of two ways. One approach analyses the Relative Standard Error (RSE) of the estimate,
which is the standard error normalised by the quantity being estimated. For example, a KMV Θ

sketch with k samples has an RSE of less than 1/
√
k − 2 [14].

A PAC sketch provides a result that estimates the correct result within some error bound ϵ
with a failure probability bounded by some parameter δ . For example, a Quantiles sketch approx-
imates the ϕth quantile of a stream with n elements by returning an element whose rank is in[
(ϕ − ϵ )n, (ϕ + ϵ )n

]
with probability at least 1 − δ [10].

4 RELAXED CONSISTENCY FOR CONCURRENT SKETCHES

Previous work by Alistarh et al. [11] has presented a formalisation for a randomised relaxation
of an object. The main idea is to have the parallel execution approximately simulate the object’s
correct sequential behaviour, with some provided error distribution. In their framework, one con-
siders the parallel algorithm and bounds the probability that it induces a large error relative to the
deterministic sequential specification. This approach is not suitable for our analysis, since the se-
quential object we parallelise (namely, the sketch) is itself randomised. Thus, there are two sources
of error: (1) the approximation error in the sequential sketch and (2) the additional error induced
by the parallelisation. For the former, we wish to leverage the existing literature on analysis of
sequential sketches. To bound the latter, we use a different methodology: We first derandomise
the sequential sketch by delegating its coin flips to an oracle, and then analyse the relaxation of
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Fig. 4. H is a 1-relaxation of H ′.

the (now) deterministic sketch. Finally, we leverage the sequential sketch analysis to arrive at a
distribution for the returned value of a query.

We adopt a variant of Henzinger et al.’s [25] out-of-order relaxation, which generalises quasi-
linearisabilty [9]. Intuitively, this relaxation allows a query to “miss” a bounded number of updates
that precede it. Because a sketch is order-agnostic, we further allow re-ordering of the updates
“seen” by a query.

Definition 2 (r-relaxed History). A sequential history H is an r-relaxation of a sequential history
H ′, if H is comprised of all but at most r of the invocations in H ′ and their responses, and each
invocation inH is preceded by all but at most r of the invocations that precede the same invocation
in H ′.

A relaxed property for an object o is an extension of its sequential specification to include also re-
laxed histories and thus allow more behaviours. This requires o to have a sequential specification,
so we convert sketches into deterministic objects by capturing their randomness in an external
oracle; given the oracle’s output, the sketches behave deterministically. For the Θ sketch, the ora-
cle’s output is passed as a hidden variable to init , where the sketch selects the hash function. In
the Quantiles sketch, a coin flip is provided with every update.

For a derandomised sketch, we refer to the set of histories arising in its sequential executions
as SeqSketch, and use SeqSketch as its sequential specification. We can now define our relaxed
semantics:

Definition 3 (r-relaxation). The r-relaxation of SeqSketch is the set of histories that have r-
relaxations in SeqSketch:

SeqSketchr � {H ′|∃H ∈ SeqSketch s.t. H is an r-relaxation of H ′}.

Note that our formalism slightly differs from that of Reference [25] in that we start with a serial-
isation H ′ of an object’s execution that does not meet the sequential specification and then “fix” it
by relaxing it to a history H in the sequential specification. In other words, we relax history H ′ by
allowing up to r updates to “overtake” every query, so the resulting relaxation H is in SeqSketch.

An example is given in Figure 4, where H is a 1-relaxation of history H ′. Both H and H ′ are
sequential, as the operations do not overlap.

The impact of the r -relaxation on the sketch’s error depends on the adversary, which may select
up to r updates to hide from every query. There exist two adversary models: A weak adversary

decides which r operations to omit from every query without observing the coin flips. A strong

adversary may select which updates to hide after learning the coin flips. Neither adversary sees
the protocol’s internal state, however, both know the algorithm and see the input. As the strong
adversary knows the coin flips, it can then extrapolate the state; the weak adversary, however,
cannot.

5 GENERIC CONCURRENT SKETCH ALGORITHM

We now present our generic concurrent algorithm. The algorithm uses, as a building block, an
existing (non-parallel) sketch. To this end, we extend the standard sketch interface in Section 5.1,
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making it usable within our generic framework. That is, any sketch exposing this extended API can
be used within our framework. Our algorithm is adaptive—it serialises ingestion in small streams
and parallelises it in large ones. For clarity of presentation, we present in Section 5.2 the parallel
phase of the algorithm, which provides relaxed semantics appropriate for large streams. Section 5.3
then discusses the adaptation for small streams.

5.1 Composable Sketches

To be able to build upon an existing sketch S, we first extend it to support a limited form of con-
currency. Sketches that support this extension are called composable.

A composable sketch has to allow concurrency between merges and queries. To this end, we add
a snapshot API that can run concurrently with merge and obtains a queryable copy of the sketch.
The sequential specification of this operation is as follows:

S .snapshot() returns a copy S ′ of S such that immediately after S ′ is returned, S .query(arд) =
S ′.query(arд) for every possible arд.

A composable sketch needs to allow concurrency only between snapshots and other snapshot
and merge operations. In general, we require that such concurrent executions be strongly linearis-
able. Our Θ sketch, shown below, simply accesses an atomic variable that holds the query result.
In other sketches, for instance, CountMin [18], HyperLogLog [3, 21, 23, 26], and Quantiles [27],
atomic snapshots can be achieved in a straightforward manner via a double collect of the relevant
state, e.g., array of counters. In specific sketches, this may be optimised in different ways.

In recent work [30], we have shown that for PAC objects, a linearisable snapshot is often not
necessary for preserving the sketch’s error bounds. We defined a relaxation of linearisability, called
Intermediate Value Linearisability (IVL). We proved that for any sequential PAC object—that is,
one guaranteeing an error of at most ϵ with a probability of at least 1−δ for some parameters ϵ and
δ—any concurrent implementation of this object that satisfies IVL guarantees the same ϵ,δ error
bounds as the sequential object. In many cases, this allows replacing the linearisable snapshot with
a single collect of the data structure, which is an array of counters in sketches such as CountMin
and HyperLogLog. In such cases, the implementation of the snapshot function is identical to the
sequential sketch’s query operation, and no synchronisation is required.

Pre-filtering. When multiple sketches are used in a multi-threaded algorithm, we can optimise
them by sharing “hints” about the processed data. This is useful when the stream sketching func-
tion depends on the processed stream prefix. For example, we explain below how Θ sketches shar-
ing a common value of Θ can sample fewer updates. Another example is reservoir sampling [33].
To support this optimisation, we add the following two APIs:

S .calcHint() returns a value h � 0 to be used as a hint.
S .shouldAdd(h, a) given a hint h and a stream element a, returns a Boolean indicating whether a

should be added to the sketch, or may be filtered out as it does not affect the sketch’s state.

Formally, the semantics of these APIs are defined using the notion of summary. (1) Consider a
sketch S initialised in some state s0. We say that s0 (or the sketch at time 0) summarises the empty
history, and similarly, the empty stream; we refer to the sketch as empty. (2) Let s ′ be the sketch’s
state after we sequentially ingest a stream a1, . . . ,an , namely, after a sequential execution with
the history

H = S .update (a1), S .resp, . . . S .update (an ), S .resp.

We say that s ′ summarises history H , and, similarly, summarises the stream a1, . . . ,an .
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Given a sketch state s ′ that summarises a stream A, if shouldAdd(S .calcHint (), a) returns false
then for every streams B1,B2 and sketch state s ′ that summarises A| |B1 | |a | |B2, s ′ also summarises
A| |B1 | |B2. Note that a state summarises two different streams if and only if that state is reached
after ingesting each of them to an empty sketch.

These APIs do not need to support concurrency, and may be trivially implemented by always
returning true . Thus, they do not impose additional constraints on the set of sketches usable with
our generic algorithm.

Example: composable Θ sketch. Algorithm 2 presents the three additional APIs for the Θ sketch.
The composable sketch is used concurrently by a single updater thread and multiple query threads.
The est variable is atomic and is shared among all threads; the remaining state variables are local
to the updating thread.

The snapshot method copies est. Note that the result of a merge is only visible after writing to
est, because it is the only variable accessed by the query. As est is an atomic variable, the require-
ment on snapshot and merge is met. To minimise the number of updates, calcHint returns Θ and
shouldAdd checks if h(a) < Θ, which is safe because the value of Θ in sketch S is monotonically
decreasing. Therefore, if h(a) ≥ Θ, then h(a) will never enter the sampleSet.

ALGORITHM 2: Additional methods for composable Θ sketch.

1: procedure snapshot
2: localCopy ← emptysketch
3: localCopy.est ← est

4: return localCopy

5: procedure calcHint
6: return Θ
7: procedure shouldAdd(H, arg)
8: return h(arg) < H

5.2 Generic Algorithm

We now present a generic concurrent sketch algorithm that can be instantiated with any compos-
able sketch adhering to the API defined in the previous section. To simplify the presentation, we
first discuss an unoptimised version of our generic concurrent algorithm (left column in of Algo-
rithm 3), called ParSketch, and later an optimised version of the same algorithm (right column of
Algorithm 3).

The algorithm is instantiated by a composable sketch and sequential sketches. It uses multiple
threads to process incoming stream elements and services queries at any time during the sketch’s
construction. Specifically, it uses N worker threads, t1, . . . , tN , each of which samples stream el-
ements into a local sketch localSi , and a propagator thread t0 that merges local sketches into a
shared composable sketch дlobalS . Although the local sketch resides in shared memory, it is up-
dated exclusively by its owner update thread ti and read exclusively by t0. Moreover, updates and
reads do not happen in parallel, and so cache invalidations are minimised. The global sketch is
updated only by t0 and read by query threads. We allow an unbounded number of query threads.

After b updates are added to localSi , ti signals to the propagator to merge it with the shared
sketch. It synchronises with t0 using a single atomic variable propi , which ti sets to 0. Because
propi is atomic, the memory model guarantees that all preceding updates to ti ’s local sketch are
visible to the background thread once propi ’s update is. This signalling is relatively expensive
(involving a memory fence), but we do it only once per b items retained in the local sketch.
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After signalling to t0, ti waits until propi � 0 (line 125); this indicates that the propagation has
completed, and ti can reuse its local sketch. Thread t0 piggybacks the hint H it obtains from the
global sketch on propi , and so there is no need for further synchronisation to pass the hint.

Before updating the local sketch, ti invokes shouldAdd to check whether it needs to process a or
not. For example, the Θ sketch discards updates whose hashes are greater than the current value of
Θ. The global thread passes the global sketch’s value of Θ to the update threads, pruning updates
that would end up being discarded during propagation. This significantly reduces the frequency
of propagations and associated memory fences.

ALGORITHM 3: Generic concurrent algorithm.

Basic algorithm

101: variables
102: composable sketch globalS, init empty
103: constant b � relaxation is 2Nb
104: for each update thread ti , 0 ≤ i ≤ N
105: sketch localSi , init empty
106:

107: int counteri , init 0
108: int hinti , init 1
109: int atomic propi , init 1

110: procedure propagator
111: while true do

112: for all thread ti s.t. propi = 0 do

113: дlobalS .merдe (localSi )
114: localSi ←empty sketch
115: propi ← дlobalS .calcHint ()

116: procedure qery(arg)
117: localCopy ← дlobalS .snapshot (localCopy)
118: return localCopy.query (arд)

119: procedure updatei (a)
120: if ¬shouldAdd(hinti , a) then return

121: counteri ← counteri + 1
122: localSi .update (a)
123: if counteri = b then

124: propi ← 0
125: wait until propi � 0
126:

127: hinti ← propi

128: counteri ← 0
129:

Optimised algorithm

201: variables
202: composable sketch globalS, init empty
203: constant b � relaxation is 2Nb
204: for each update thread ti , 0 ≤ i ≤ N
205: sketch localSi [2], init empty
206: int curi , init 0
207: int counteri , init 0
208: int hinti , init 1
209: int atomic propi , init 1

210: procedure propagator
211: while true do

212: for all thread ti s.t. propi = 0 do

213: дlobalS .merдe (localSi [1-curi ])
214: localSi [1 − curi ]←empty sketch
215: propi ← дlobalS .calcHint ()

216: procedure qery(arg)
217: localCopy ← дlobalS .snapshot (localCopy)
218: return localCopy.query (arд)

219: procedure updatei (a)
220: if ¬shouldAdd(hinti , a) then return

221: counteri ← counteri + 1
222: localSi [curi ].update (a)
223: if counteri = b then

224:

225: wait until propi � 0
226: curi ← 1 − curi

227: hinti ← propi

228: counteri ← 0
229: propi ← 0

Query threads use the snapshot method, which can be safely run concurrently with merge,
hence there is no need to synchronise between the query threads and t0. The freshness of the
query is governed by the r -relaxation. In Section 6.2, we prove Lemma 1 below, asserting that the
relaxation is Nb. This may seem straightforward, as Nb is the combined size of the local sketches.
Nevertheless, proving this is not trivial, because the local sketches pre-filter many additional up-
dates, which, as noted above, is instrumental for performance.
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Lemma 1. ParSketch instantiated with SeqSketch is strongly linearisable with regards to

SeqSketchr , where r = 2Nb.

A limitation of ParSketch is that update threads are idle while waiting for the propagator to ex-
ecute the merge. This may be inefficient, especially if a single propagator iterates through many
local sketches. In the right column of Algorithm 3, we present the optimised OptParSketch algo-
rithm, which improves thread utilisation via double buffering.

In OptParSketch, localSi is an array of two sketches. When ti is ready to propogate localSi [curi ],
it flips the curi bit denoting which sketch it is currently working on (line 226), and immediately
sets propi to 0 (line 229) to allow the propagator to take the information from the other one. It then
starts digesting updates in a fresh sketch.

Of course, the optimisation is only useful as long as the propagator thread is fast enough to
empty the inactive buffers before the active ones fill up. The number of threads where this will
saturate is highly sketch-dependant. In the example of the Θ sketch, thanks to pre-filtering, the
working threads filter out many updates without filling their buffers, so merges are required infre-
quently, and we can scale to a large number of threads with a single propagator regardless of the
buffer size. In sketches without pre-filtering, the scalability typically depends on the buffer size.

In Section 6.3, we prove the correctness of the optimised algorithm by simulating N threads
of OptParSketch using 2N threads running ParSketch. We do this by showing a simulation rela-

tion [28]. We use forward simulation (with no prophecy variables), ensuring strong linearisability.
We conclude the following theorem:

Theorem 1. OptParSketch instantiated with SeqSketch is strongly linearisable with regards to

SeqSketchr , where r = 2Nb.

5.3 Adapting to Small Streams

By Theorem 1, a query can miss up to r updates. For small streams, the error induced by this can be
very large. For example, the sequential Θ sketch answers queries with perfect accuracy in streams
with up to k unique elements, but if k < r , the relaxation can miss all updates. In other words,
while the additive error is guaranteed to be bounded by r , the relative error can be infinite.

To rectify this, we implement eager propagation for small streams, whereby update threads prop-
agate updates immediately to the shared sketch instead of buffering them. Note that during the
eager phase, updates are processed sequentially. Support for eager propagation can be added to
Algorithm 3 by initialisingb to 1 and having the propagator thread raise it to the desired buffer size
once the stream exceeds some pre-defined length. The correctness of the adaptation is straightfor-
ward, since the buffer size is only used locally and only impacts the relaxation. The error analysis
of the next section can be used to determine the adaptation point.

6 PROOFS

In Section 6.1, we introduce some formalisms. In Section 6.2, we prove that the unoptimised algo-
rithm is strongly linearisable with respect to the relaxed specification SeqSketchr with r = Nb.
Finally, in Section 6.3, we show that the the optimised algorithm is strongly linearisable with re-
spect to the relaxed specification SeqSketchr with r = 2Nb.

6.1 Definitions

Note that the only methods invoked by ParSketch on дlobalS are snapshot and merge, and since
merge is only invoked by t0, the only concurrency is between a snapshot and another operation
(snapshot or merge). Recall that we required such executions of a composable sketch to be strongly
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linearisable. By slight abuse of terminology, we refer to these operations as atomic steps, for ex-
ample, we refer to the linearisation point of дlobalS .merge simply as “дlobalS .merge step.”

Likewise, as localSi is only accessed sequentially by a single thread, either ti or t0 (using propi

to synchronise), we refer to the method calls shouldAdd and update as atomic steps.
Because we prove only safety properties, we restrict out attention to finite executions. For anal-

ysis purposes, we use auxiliary counters:

• An array siд_ctr [N ], which counts the number of times each thread ti signals to the propa-
gator (line 124).
• An array merдe_ctr [N ] counting the number of times t0 executes a merge with thread ti ’s

local sketch (line 113).

Recall that in Section 3, we said that a sketch’s state summarises a stream or a sequential history
if it is the state of a sketch that has processed the stream or history. We now overload the term
“summarises” to apply also to threads.

Definition 4 (Thread Summary). Consider a time t in an execution σ of Algorithm 3. If at time
t either propi � 0 or siд_ctr [i] > merдe_ctr [i], then we say that update thread ti summarises the
history summarised by localSi at time t . Otherwise, thread ti summarises the empty history at
time t . The propagator thread t0 summarises the same history as дlobalS at any time during an
execution σ .

Note that if the first condition (propi � 0 or siд_ctr [i] > merдe_ctr [i]) is not satisfied, then this
means that the propagator thread might be in the process of clearing localSi in line 114.

As we want to analyse each thread’s steps in an execution, we first define the projection from
execution σ onto a thread ti .

Definition 5 (Projection). Given a finite execution σ and a thread ti , σ |ti
is the subsequence of σ

consisting of steps taken by ti .

We want to prove that each thread’s summary corresponds to the sequence of updates processed
by that thread since the last propagation, taking into account only those that alter local state
variables. These are updates for which shouldAdd returns true.

Definition 6 (Unprop Updates). Given a finite execution σ , we denote by suffi (σ ) the suffix of
σ |ti

starting at the last дlobalS .merge(localSi ) event, or the beginning of σ if no such event exists.
The unprop suffix up_suffi (σ ) of update thread i is the subsequence of H (suffi (σ )) consisting of
update (a) executions in suffi (σ ) for which shouldAdd(hinti ,arд) returns true in line 120.

We define the relation between a sequential history H and a stream A.

Definition 7. Given a finite sequential history H , S (H ) is the stream a1, . . . ,an such that ak is
the argument of the kth update in H .

Finally, we define the notion of happens before in a sequential history H .

Definition 8. Given a finite sequential history H and two method invocations M1,M2 in H , we
denote M1 ≺H M2 if M1 precedes M2 in H .

6.2 Unoptimised Algorithm Proof

Our strong linearisability proof uses two mappings, f and l , from executions to sequential histories
defined as follows: For an execution σ of ParSketch, we define a mapping f by ordering operations
according to visibility points defined as follows:
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• For a query, the visibility point is the snapshot operation it executes.
• For an updatei (a) where shouldAdd(propi , a) returns false at time t , its visibility point is t .
• Otherwise, for an updatei (a), let t be the first time after its invocation in σ when thread i

changes propi to 0 (line 124). Its visibility point is the (linearisation point of the) first merge
that occurs with localSi after time t. If there is no such time, then updatei (a) does not have
a visibility point, i.e., is not included in f (σ )

Note that in the latter case, the visibility point may occur after the update returns, and so f does
not necessarily preserve real-time order.

We also define a mapping l by ordering operations according to linearisation points defined as
follows:

• An updates’ linearisation point is its invocation
• A query’s linearisation point is its visibility point.

By definition, l (σ ) is prefix-preserving.
We show that for every execution σ of ParSketch, (1) f (σ ) ∈ SeqSketch, and (2) f (σ ) is an

r -relaxation of l (σ ) for r = Nb. Together, this implies that l (σ ) ∈ SeqSketchr , as needed.
We first show that Propi � 0 if ti ’s program counter is not on lines 124 or 125.

Invariant 1. At any time during a finite execution σ of ParSketch for every i = 1, . . . ,N , if ti ’s
program counter is not on lines 124 or 125, then propi � 0.

Proof. The proof is derived immediately from the algorithm: propi is initialised to 1 and gets
the value of 0 on line 124, and then waits on line 125 until propi � 0. After continuing passed line
125, propi � 0 again. �

We also observe the following:

Observation 1. Given a finite execution σ of ParSketch, for every i = 1, . . . ,N , every execution

of дlobalS .merдe (localSi ) in σ (line 113) is preceded by an execution of propi ← 0 (line 124).

We observe the following relationship between ti ’s program counter and siд_ctr [i] and
merдe_ctr [i]:

Observation 2. At all times during a finite execution σ of ParSketch, for every i = 1, . . . ,N ,

merдe_ctr [i] ≤ siд_ctr [i] ≤ merдe_ctr [i] + 1. Moreover, if ti ’s program counter is not on lines 124

or 125, then siд_ctr [i] =merдe_ctr [i].

We show that at every point in an execution, update thread ti summarises up_suffi (σ ). In
essence, this means that we have not “forgotten” any updates.

Invariant 2. At all times during a finite execution σ of ParSketch, for every i = 1, . . . ,N , ti
summarises up_suffi (σ ).

Proof. The proof is by induction on the length of σ . The base is immediate. Next, we consider
a step in σ that can alter the invariant. We assume the invariant is correct for σ ′ and prove cor-
rectness for σ = σ ′, step. We consider only steps that can alter the invariant, meaning the step can
either lead to a change in up_suffi (σ ), or a change in the history summarised by ti . This means
we need to consider only four cases:

• A step localSi .update (arд) (line 122) by thread ti .
In this case, up_suffi (σ ) =up_suffi (σ ′),update (arд). By the inductive hypothesis, before
the step localSi summarises up_suffi (σ ′), and so after the update, localSi summarises
up_suffi (σ ′), update (arд) = up_suffi (σ ). From Invariant 1 propi � 0, therefore, by Defini-
tion 4, ti summarises the same history as localSi , i.e., up_suffi (σ ), preserving the invariant.
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• A step propi ← 0 (line 124) by thread ti .
By the inductive hypothesis, before the step, ti summarises the history up_suffi (σ ′). Be-
cause before the step propi � 0, localSi summarises the same history. As no update occurs,
up_suffi (σ ′)=up_suffi (σ ). The step does not alter localSi , so after the step, localSi still sum-
marises up_suffi (σ ). On this step the counter siд_ctr [i] is increased, butmerдe_ctr [i] is not,
so siд_ctr [i] > merдe_ctr [i]. Therefore, by Definition 4, ti summarises the same history as
localSi , namely, up_suffi (σ ), preserving the invariant.
• A step дlobalS .merдe (localSi ) (line 113) by thread t0.

By Definition 6, after this step up_suffi (σ ) is empty. As this step is amerдe ,merдe_ctr [i] is
increased by one, so siд_ctr [i] =merдe_ctr [i] by Observation 2. Therefore, by Definition 4,
ti summarises the empty history, preserving the invariant.
• A step propi ← дlobalS .calcHint () (line 115) by thread t0

Before executing the step, t0 executed line 114. Thread ti is waiting for propi � 0 on
line 125, therefore has not updated localSi . Therefore, by Definition 4, localSi summarises
the empty history. As a merge with thread i was executed and no updates have been invoked,
up_suffi (σ ) is the empty history. The function calcHint cannot return 0, therefore after that
step propi � 0. By Definition 4, ti summarises the same history as localSi , i.e., the empty
history. Therefore, ti summarises up_suffi (σ ), preserving the invariant. �

Next, we prove that t0 summarises f (σ ).

Invariant 3 (History of Propagator Thread). Given a finite execution σ of ParSketch, t0
summarises f (σ ).

Proof. The proof is by induction on the length of σ . The base is immediate. We assume the
invariant is correct for σ ′ and prove correctness for σ = σ ′, step. There are two steps that can alter
the invariant.

• A step дlobalS .merдe (localSi ) (line 113) by thread t0.
By the inductive hypothesis, before the step, t0 summarises f (σ ′). And by Invariant 2, before
the update, ti summarises up_suffi (σ ′), and by Invariant 1 localSi summarises the same
history. Let A = S ( f (σ )), and B = S (up_suffi (σ ′)). After the merge дlobalS summarises
A| |B. Therefore, t0 summarises f (σ ) preserving the invariant.
• A step shouldAdd(propi , a) (line 120) by thread ti , returning false.

Let H be that last hint returned to ti , and let σ ′′ be the prefix of σ up to this point. By
the induction hypothesis, at that point дlobalS summarised f (σ ′′). Let A = S ( f (σ ′′)), and
let B = S ( f (σ ′)), and let B1 be such that B = A| |B1. By the induction hypothesis, before
the step, дlobalS summarises B = A| |B1. By the assumption of shouldAdd, if shouldAdd(H ,
arд) returns false, then if a sketch summarises B = A| |B1 | |B2, then it also summarises B =
A| |B1 | |a | |B2. Let B2 = ∅, then дlobalS summarises B = A| |B1 | |B2, therefore also summarises
A| |B1 | |a | |B2 = A| |B1 | |a. Therefore, after the step, дlobalS summarises f (σ ) preserving the
invariant. �

To finish the proof that f (σ ) ∈ SeqSketch, we prove that a query invoked at the end of σ returns
a value equal to the value returned by a sequential sketch after processing A = S ( f (σ )).

Lemma 2 (Query Correctness). Given a finite execution σ of ParSketch, let Q be a query

that returns in σ , and let v be Q’s visibility point. Let σ ′ be the prefix of σ until point v , and let

A = S ( f (σ ′)). Q returns a value that is equal to the value returned by a sequential sketch after

processing A.
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Proof. Let σ be an execution of ParSketch, and let Q be a query that returns in σ . Let σ ′ and
A be as defined in the lemma. By Invariant 3, t0 summarises f (σ ′) at point v , therefore globalS

summarises f (σ ′) at the same point, therefore globalS summarises stream A at point v . The visi-
bility point for the query, at point v , is дlobalS .snapshot(). By the requirement from S .snapshot(),
for all arд дlobalS .query (arд) = localCopy.query (arд). Because дlobalS summarises stream A,
localCopy.query (arд) returns a value equal to the value returned by the sequential sketch дlobalS
after processing A. �

As we have proven that each query in f (σ ) returns a value that estimates all the updates that
happen before its invocation, we have proven the following:

Lemma 3. Given a finite execution σ of ParSketch, f (σ ) ∈ SeqSketch.

To complete the proof, we prove that f (σ ) is an r -relaxation of l (σ ), for r = Nb. We begin by
proving orders between queries and other method calls.

Lemma 4. Given a finite execution σ of ParSketch, and given an operation O(query or update) in

l (σ ), for every Q in l (σ ) such that Q ≺l (σ ) O , then Q ≺f (σ ) O .

Proof. IfO is a query, then proof is immediate from the definitions of l and f . IfO is an update,
then, by the definition of f , an updates visibility point is at the earliest its linearisation point. AsQ’s
visibility point and linearisation point are equal, it follows that if Q ≺l (σ ) O, then Q ≺f (σ ) O . �

We next prove an upper bound on the number of updates in up_suffi (σ ). We denote the number
of updates in history H as |H |.

Lemma 5. Given a finite execution σ of ParSketch, |up_suffi (σ ) | ≤ b.

Proof. As counteri is incremented before an update that is included in up_suffi (σ ), it follows
that |up_suffi (σ ) | ≤ counteri . When counteri = b, ti signals for a propagation (line 124) and then
waits until propi � 0 (line 125). When ti finishes waiting, then it zeros the counter (line 128) before
ingesting more updates, therefore, counti ≤ b. Therefore, it follows that |up_suffi (σ ) | ≤ b. �

As f (σ ) contains all updates with visibility points, we can now prove the following:

Lemma 6. Given a finite execution σ of ParSketch, | f (σ ) | ≥ |l (σ ) | − Nb.

Proof. From Lemma 5, |up_suffi (σ ) | ≤ b. The only updates without a visibility point are
updates that are in up_suffi (σ ) for some i . Therefore, f (σ ) contains all updates but any up-
date in a history up_suffi (σ ) for some i . There are N update threads, therefore | f (σ ) | =
|l (σ ) |−∑N

i=1 |up_suffi (σ ) | so | f (σ ) | ≥ |l (σ ) | − Nb. �

We will now prove that given an execution σ of ParSketch, every invocation in f (σ ) is preceded
by all but at most Nb of the invocations in l (σ ).

Lemma 7. Given a finite execution σ of ParSketch, f (σ ) is an Nb-relaxation of l (σ ).

Proof. Let σ be a finite execution of ParSketch, and consider an operationO in f (σ ) such that
O is also in l (σ ). Let Ops = {O ′ | (O ′ ≺l (σ ) O ) ∧ (O ′ ⊀f (σ ) O ) }. We show that |Ops | ≤ Nb.
By Lemma 4, for every query Q in l (σ ) such that Q ≺l (σ ) O , then Q ≺f (σ ) O , meaning Q � Ops .
Let σpr e be a prefix and σpost a suffix of σ such that l (σ ) = l (σpr e ),O, l (σpost ). From Lemma 6,
| f (σpr e ) | ≥ |l (σpr e ) | − Nb. As | f (σpr e ) | is the number of updates in f (σpr e ), and |l (σpr e ) | is the
number of updates in l (σpr e ), f (σpr e ) contains all but at most Nb updates in l (σpr e ). As l (σpr e )
contains all the updates that precede O . Meaning Ops is all the updates in l (σpr e ) and not in
f (σpr e ). Therefore, |Ops | = |l (σpr e ) | − | f (σpr e ) | ≤ Nb. Therefore, by Definition 3, f (σ ) is an
Nb-relaxation of l (σ ). �
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Fig. 5. Simulation of processing A = A1 | |A2 | | . . . | |An .

Putting together Lemmas 3 and 7, we have shown that given a finite execution σ of ParSketch,
f (σ ) ∈ SeqSketch and f (σ ) is an Nb-relaxation of l (σ ). We have proven Lemma 1.

6.3 Optimised Algorithm Proof

We denote the optimised version of Algorithm 3 as OptParSketch. We prove the correctness of
OptParSketch by showing that it can simulate ParSketch. This proof technique is known as a sim-

ulation relation, which, as explained in Reference [28], Chapter 2.5, is a correspondence relating
the states of OptParSketch and ParSketch when the algorithms run on the same input stream. Es-
tablishing a simulation relation proves that OptParSketch is strongly linearisable with regards to
SeqSketch2N b [13, 22].

Consider an arbitrary worker thread ti for the optimised algorithm, and simulate this thread
using two worker threads t0

i , t
1
i of the basic algorithm. To simulate N worker threads, we need 2N

threads, and they are mapped the same way.
The idea behind the simulation is that there might be a delay between the time when the hint

is returned to the worker thread and the time when this hint is used for pre-processing, so we
can simulate each thread by two threads. For example, in Figure 5, each block Ai is a stream
such that b updates pass the test of shouldAdd (except maybe An ). The stream processed by ti
is A = A1 | |A2 | | . . . | |An and we assume n is even. Each Ai is evaluated against the hint written
above it. The thread t0

i simulates processing A1 | |A3 | | . . . | |An−1, and thread t1
i simulates processing

A2 | |A4 | | . . . | |An .
The simulation uses auxiliary variables oldHint0

i , and oldHint1
i , both initialised to 1. These vari-

ables are updated with the flipping of curi (line 226), such that:

• oldHint0
i is updated to be the current (pre-flip) value of hinti

• oldHint1
i is updated to be the current (pre-flip) value of oldHint0

i

In addition, the simulation uses an auxiliary variable auxCounti initialised to 0. This variable is
set to b before the first execution of line 226 and is never changed after that.

Finally, the simulation uses two auxiliary variables PC0
i and PC1

i to be program counters for
threads t0

i and t1
i . They are initialised to Idle.

We define a mapping д from the state of OptParSketch to the state of ParSketch as follows:

• globalS in OptParSketch is mapped to globalS in ParSketch.
• localSi [j] is mapped to t j .localS for j = 0, 1.
• counteri is mapped to tcuri .counter.
• auxCount is mapped to t1−curi .counter.
• hinti is mapped to tcuri .hint and tcuri .prop if ti is not right before executing line 227, other-

wise oldHint0
i is mapped to tcuri .hint and propi is mapped to tcuri .prop.

• propi is mapped to t1−curi .prop if ti is not right before executing lines 227–229, otherwise
oldHint1

i is mapped to t1−curi .prop.
• oldHint1

i is mapped to t1−curi .hint.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 6. Publication date: April 2022.



Fast Concurrent Data Sketches 6:17

Fig. 6. Reference mapping of д when curi equals 0 before executing line 227.

Table 1. Example for Steps Taken by t0
i and t1

i for Each Step
Taken by ti when curi = 0 before Line 223, Meaning the

“Round” of b Updates Was Ingested by t0
i

OptParSketch line ParSketch line Executing thread

223 123 t0
i

225 125 t1
i

226 - -

227 127 t1
i

228 128 t1
i

229 124 t0
i

On line 226 neither thread takes a step.

For example, Figure 6 shows a mapping when curi equals 0, before executing line 227. Table 1
shows the steps taken by t0

i and t1
i when curi = 0 before line 223.

We also define the steps taken in ParSketch when OptParSketch takes a step. If a query is
invoked, then both algorithms take the same step. If an update in invoked, then the update is
invoked in tcuri

i in ParSketch. If the counter gets up to b (meaning we get to line 225), then t1−curi

i

executes line 125. WhenOptParSketch flips curi (line 226), then neither of the threads t0
i or t1

i take
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a step. Afterwards, lines 227 and 228 execute the corresponding lines (127 and 128) on thread tcuri

i ,

and line 229 executes 124 on thread t1−curi

i .

Lemma 8. д is a simulation relation from OptParSketch to ParSketch.

Proof. The proof is by induction on the steps in an execution, for some thread i . In the initial
state, the mapping trivially holds. In a given step, we refer to tcuri

i as the active thread and t1−curi

i as
the inactive thread. Query threads trivially map to themselves and do not alter the state. We next
consider update and propagator threads. First, consider the steps of OptParSketch that execute
the corresponding step on the active thread. These are lines 219–223 and 227–228, which directly
correspond to lines 119–123 and 127–128 of ParSketch in the active thread (tcuri

i ), and, except in
lines 127 and 129, the affected state variables are mapped to the same state variables in the active
thread. So these steps trivially preserve д. Line 124 in ParSketch is executed on the inactive thread
when OptParSketch executes line 229. As after this step the inactive thread’s prop and propi are
both 0, so д is preserved. Line 125 is executed on the inactive thread, waiting on the same variable,
and modifies no variables, so д is preserved.

Line 226 flips curi and neither thread takes a step in ParSketch. Here, the mappings of prop, hint ,
and counter change. On this step oldHint0

i and oldHint1
i are updated as defined, and as ti is right

before executing line 227, oldHint1
i is equal to the inactive thread’s (t1−curi

i ) hint, and, as before the
step the (now) inactive thread’s prop was equal to hinti , then after this step it is equal to oldHint0

i .
As before the step the (now) active thread’s hint was equal to oldHint0

i , after this step it is equal
to oldHint1

i . Finally, as before the step the (now) active thread’s prop was equal to propi , after this
step it remains equal to propi , so this step preserve д.

In line 227, hinti gets the value of propi , and the same happens on the active thread. As before
this line the active thread’s prop was equal to propi , after this step the inactive thread’s prop and
hint are equal to hinti , preservingд. As the active thread’s counter is equal to counteri , line 228 pre-
serves д. The now inactive thread has filled its local sketch, therefore its counter is b, which equals
auxCount. Finally, the propagator thread’s steps (lines 210–215) execute on the inactive thread and
it is easy to see that all variables accessed in these steps are mapped to the same variables in the
inactive thread. �

Note that the simulation relation uses no prophecy variables, i.e., does not “look into the fu-
ture.” This establishes strong linearisability [13], intuitively, because the mapping of all ParSketch’s
steps—including linearisation points—to steps in OptParSketch is prefix-preserving. Since we use
two update threads of ParSketch to simulate one thread in OptParSketch, we have proven the
following theorem:

Theorem 1. OptParSketch instantiated with SeqSketch is strongly linearisable with regards to

SeqSketchr , where r = 2Nb.

7 DERIVING ERROR BOUNDS

We now show how to translate the r -relaxation to a bound on the error of typical sketches. We
consider two types of error analyses of existing sketches. In Section 7.1, we consider the relative
standard error of the Θ sketch, which was used in the original analysis of the sketch. In Section 7.2.1,
we consider PAC sketches and show generic error bounds for all r -relaxed implementations of PAC
sketches estimating the number of unique elements and quantiles.

7.1 Θ Error Bounds

We bound the error introduced by an r -relaxation of the Θ sketch over a stream with n unique
elements and a parameter (sketch size) of k . Given Theorem 1, the optimised concurrent sketch’s
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Table 2. Expectation and RSE of Θ Sketch with Numerical Values for r = 8,k = 210,n = 215

Sequential sketch Strong adversary As Weak adversary Aw

Closed-form Numerical Numerical Closed-form
Expectation n 215 215 · 0.995 n k−1

k+r−1
RSE ≤ 1√

k−2
≤3.1% ≤3.8% ≤2 1√

k−2

error is bounded by the relaxation’s error bound for r = 2Nb. We consider strong and weak
adversaries,As andAw , respectively. For the strong adversary, we are able to show only numerical
results, whereas for the weak one, we show closed-form bounds. The results are summarised in
Table 2. Our analysis relies on known results from order statistics [20]. It focuses on long streams,
and assumes n > k + r .

We would like to analyse the distribution of the kth largest element in the stream that the
relaxed sketch processes, as this determines the result returned by the algorithm. We cannot use
order statistics to analyse this, because the adversary alters the stream and so the stream seen by
the algorithm is not random. However, the stream of hashed unique elements seen by the adversary
is random. Furthermore, if the adversary hides from the algorithm j elements smaller than Θ, then
the kth largest element in the stream seen by the sketch is the (k + j )th largest element in the
original stream seen by the adversary. This element is a random variable and, therefore, we can
apply order statistics to it.

We thus model the hashed unique elements in the stream A processed before a given query as
a set of n labelled iid random variables A1, . . . ,An , taken uniformly from the interval [0, 1]. Note
that A is the stream observed by the reference sequential sketch, and also by adversary that hides
up to r elements from the relaxed sketch. Let M (i ) be the ith minimum value among the n random
variables A1, . . . ,An .

Let est (x ) � k−1
x

be the estimate computation with a given x = Θ (line 18 of Algorithm 2).
The sequential (non-relaxed) sketch returns e = est (M (k ) ). It has been shown that the sketch is
unbiased [14], i.e., E[e] = n the number of unique elements. Moreover, previous work [2] has
analysed the relative standard error (RSE) of the sketch, which is the standard error divided by
the mean, and has shown it to be RSE[e] ≤ 1√

k−2
.

In a relaxed history, the adversary chooses up to r variables to hide from the given query to
maximise its error. It can also re-order elements, but the state of a Θ sketch after a set of updates
is independent of their processing order. Let Mr

(i )
be the ith minimum value among the hashes

seen by the query, i.e., arising in updates that precede the query in the relaxed history. The value
of Θ is Mr

(k )
, which is equal to M (k+j ) for some 0 ≤ j ≤ r . We do not know if the adversary can

actually control j, but we know that it can impact it, and so for our error analysis, we consider
strictly stronger adversaries—we allow both the weak and the strong adversaries to choose the
number of hidden elements j. Our error analysis gives an upper bound on the error induced by
our adversaries. Note that the strong adversary can choose j based on the coin flips, while the
weak adversary cannot, and so it cannot distinguish the algorithm state (set of retained elements)
from a random one. Since the state is random in all runs, it chooses the same j in all runs. We show
that the largest error is always obtained either for j = 0 or for j = r .

Claim 1. Consider j values Xi , 1 ≤ i ≤ j, in the interval [0, 1], let M (i ) be the ith minimum value

among the j. The Xi that maximises | k−1
x
− n | for a given n is either M (0) or M (j ) .

Proof. Assume for the sake of contradiction that the variable that maximises | k−1
x
− n | is M (i )

for 0 < i < j. We consider two cases:
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• If k−1
M (i )
≤ n, as M (j ) > M (i ) , then k−1

M (j )
< k−1

M (i )
≤ n, therefore | k−1

M (j )
− n | > | k−1

M (i )
− n |, which is a

contradiction.
• If k−1

M (i )
> n, as M (0) < M (i ) , then k−1

M (0)
> k−1

M (i )
> n, therefore | k−1

M (0)
− n | > | k−1

M (i )
− n |, which is a

contradiction. �

Consider an adversary A whose estimate is a random variable eA , characterised by the proba-
bility density function feA . The expectation of eA is not necessarily n, and so the relative standard
error needs to be computed as the error from the desired estimate, n, rather than from the expec-
tation. This can be done using the following formula:

(RSE[eA])2 =
1

n2

∞∫
−∞

(e − n)2 · feA (e ) de .

We prove the following bound:

RSE[eA] ≤
√

σ 2 (eA )

n2
+

√
(E[eA] − n)2

n2
.

Lemma 9. The RSE of eA satisfies the inequality RSE[eA] ≤
√

σ 2 (eA )
n2 +

√
(E[eA ]−n)2

n2 .

Proof.

(RSE[eA])2 =
1

n2

∞∫
−∞

(e − n)2 · feA (e ) de

=
1

n2

∞∫
−∞

(e − E[eA] + E[eA] − n)2 · feA (e ) de

≤ 1

n2

∞∫
−∞

(
(e − E[eA])2 + (E[eA] − n)2

)
· feA (e ) de

=
σ 2 (eA ) + (E[eA] − n)2

n2

RSE[eA] ≤
√

σ 2 (eA )

n2
+

√
(E[eA] − n)2

n2
. �

Strong adversary As . The strong adversary knows the coin flips in advance, and thus chooses j
to be д(0, r ), where д is the choice that maximises the error:

д(j1, j2) � arg max
j ∈{j1, j2 }

| k − 1

M (k+j )
− n |.

Recall the the As knows the oracles coin flips, therefore knows M (k ) and M (k+r ) , and chooses
Mr

(k )
accordingly. Therefore, our analysis is on the order statistics of the full stream, as it is this

that the adversary sees. From order statistics, the joint probability density function of M (k ),M (k+r )

is:

fM (k ),M (k+r )
(mk ,mk+r ) = n!

mk−1
k

(k − 1)!

(mk+r −mk )r−1

(r − 1)!

(1 −mk+r )n−(k+r )

(n − (k + r ))!
.
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Fig. 7. Areas of M(k ) and M(k+r ) . In the dark gray As induces Θ = M(k+r ) , and in the light gray, Θ = M(k ) .
The white area is not feasible.

The expectation of eAs
and e2

As
can be computed as follows:

E[eAs
] =

1∫
0

mk+r∫
0

eAs
· fM (k ),M (k+r )

(mk ,mk+r ) dmk dmk+r

E[e2
As

] =

1∫
0

mk+r∫
0

[
eAs

]2 · fM (k ),M (k+r )
(mk ,mk+r ) dmk dmk+r .

(1)

Finally, the RSE of eAs
is derived from the standard error of eAs

:

RSE[eAs
]2 =

1

n2

1∫
0

mk+r∫
0

(
eAs
− n)2 · fM (k ),M (k+r )

(mk ,mk+r ) dmk dmk+r

=
1

n2

1∫
0

mk+r∫
0

(
eAs
− E[eAs

] + E[eAs
] − n)2 · fM (k ),M (k+r )

(mk ,mk+r ) dmk dmk+r

≤ 1

n2

(
σ 2 (eAs

) + (eAs
− n)2

)

RSE[eAs
] ≤

√
σ 2 (eAs

) + (eAs
− n)2

n2

≤
√

σ 2 (eAs
)

n2
+

√
(eAs

− n)2

n2
.

(2)

In Figure 7, we plot the regions where д equals 0 and д equals r , based on their possible combi-
nations of values. The estimate induced by As is eAs

� k−1
M (k+д (0,r ))

. The expectation and standard

error of eAs
are calculated by integrating over the gray areas in Figure 7 using their joint probabil-

ity function from order statistics. Equations (1) and (2) give the formulas for the expected estimate
and its RSE bound, respectively. We do not have closed-form bounds for these equations. Example
numerical results, computed based on Equation (2), are shown in Table 2.

Weak adversary Aw . Not knowing the coin flips, Aw chooses j that maximises the expected
error for a random hash function: E[n − est (Mr

(k )
)] = E[n − est (M (k+j ) )] = n − n k−1

k+j−1 . Obviously

this is maximised for j = r . The orange curve in Figure 8 depicts the distribution of eAw
, and the

distribution of e is shown in blue.
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Fig. 8. Distribution of estimators e and eAw
. The RSE of eAw

with regards to n is bounded by the relative
bias plus the RMSE of eAw

.

Recall that Aw always hides r elements smaller than Θ, thus forcing Mr
(k )
= M (k+r ) . Here, too,

our analysis is on the order statistics for the full stream, as this is what the adversary sees. The
expectation of eAw

and e2
Aw

is computed using well known equations from order statistics:

E[eAw
] = E

[
k − 1

M (k+r )

]
= n

k − 1

k + r − 1

E[e2
Aw

] = (k − 1)2 n(n − 1)

(k + r − 2) (k + r − 1)

σ 2[eAw
] = E[e2

Aw
] − E[eAw

]2

= (k − 1)2 n(n − 1)

(k + r − 2) (k + r − 1)
−

(
n

k − 1

k + r − 1

)2

<
n(k − 1)2

k + r − 1

[
n

(k + r − 2) (k + r − 1)

]

σ 2[eAw
] <

n2

k + r − 2
.

We derive the following equation: √
σ 2[eAw

]

E[eAw
]
<

1

k − 2
. (3)

Finally, the RSE of eAw
is derived from the standard error of eAw

, and as E[eAw
] < n, and using

the same “trick” as in Equation (2):

RSE[eAw
]2 =

1

n2

1∫
0

(
eAw

− n)2 · fM (k+r )
(mk+r ) dmk+r

<
1

n2

(
σ 2 (eAw

) + (E[eAw
] − n)2

)

RSE[eAw
] <

√
σ 2 (eAw

)

E[eAw
]2
+

√
(E[eAw

] − n)2

n2
.

Using Equation (3):

RSE[eAw
] <

√
1

k − 2
+

r

k − 2
. (4)
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We have shown that the RSE is bounded by
√

1
k−2 +

r
k−2 for Aw . Thus, whenever r is at most

√
k − 2, the RSE of the relaxed Θ sketch is coarsely bounded by twice that of the sequential one.

And in case k � r , the addition to the RSE is negligible.

7.2 Error Bounds for PAC Sketches

We now provide a generic analysis, considering a PAC sketch as a black box. Section 7.2.1 studies
quantiles sketches, and in Section 7.2.2, we study PAC sketches estimating the number of unique
elements in a stream, e.g., HyperLogLog. In both cases, we show that if the sequential sketch’s error
bound is ϵ , then the error of an r -relaxed sketch over a stream of size n is bounded by ϵ + r ϵ

n
+ r

n
.

This expression tends to ϵ as the stream sizes grows to infinity, but may be substantially larger for
small streams. A system designer can use this formula to determine the adaptation point so the
error is never above a desired threshold.

7.2.1 Quantiles Error Bounds. We now analyse the error for any implementation of the sequen-
tial Quantiles sketch, provided that the sketch is PAC, meaning that a query for quantile ϕ returns
an element whose rank is between (ϕ − ϵ )n and (ϕ + ϵ )n with probability at least 1 − δ for some
parameters ϵ and δ . We show that the r -relaxation of such a sketch returns an element whose rank
is in the range (ϕ ± ϵr )n with probability at least 1 − δ for ϵr = ϵ − r ϵ

n
+ r

n
.

Although the desired summary is order-agnostic here, too, Quantiles sketch implementations
(e.g., Reference [10]) are sensitive to the processing order. In this case, advance knowledge of the
coin flips can increase the error already in the sequential sketch. Therefore, we do not consider a
strong adversary, but rather discuss only the weak one. Note that the weak adversary attempts to
maximise ϵr .

Consider an adversary that knows ϕ and chooses to hide i elements below the ϕ quantile and j
elements above it, such that 0 ≤ i + j ≤ r . The rank of the element returned by the query among
the n− (i + j ) remaining elements is in the range ϕ (n− (i + j )) ±ϵ (n− (i + j )). There are i elements
below this quantile that are missed, and therefore its rank in the original stream is in the range:[

(ϕ − ϵ ) (n − (i + j )) + i, (ϕ + ϵ ) (n − (i + j )) + i
]
. (5)

This can be rewritten as:

[ϕn − (ϕj − (1 − ϕ)i + ϵ (n − (i + j ))),

ϕn + ((1 − ϕ)i − ϕj + ϵ (n − (i + j )))].
(6)

Note that this interval is symmetric around ϕ (n − (i + j )) + i . The adversary attempts to max-
imise the distance of the edges of this interval from the true rank, (i.e., maximise ϵr ). The distance
between the central points is:

|ϕn + (1 − ϕ)i − ϕj − ϕn | = |(1 − ϕ)i − (ϕ)j |.

Given that 0 ≤ i + j ≤ r , we show that this expression is maximised for i + j = r .

Claim 2. Given 0 ≤ i, j such that 0 ≤ i + j ≤ r , the expression |(1 − ϕ)i − (ϕ)j | is maximised for

(i, j ) = (x ,y) such that x + y = r .

Proof. Assume by contradiction that the expression given in the claim is maximised for (x ,y)
such that x +y = r ′ < r . Denote r ′ = r −k . We consider two cases for the expression (1−ϕ)i − (ϕ)j.

If (1 − ϕ)x − (ϕ)y ≥ 0, then (1 − ϕ) (x + k ) − (ϕ)y ≥ (1 − ϕ)x − (ϕ)y > 0. In this case denote
x ′ = x + k and y ′ = y.

If (1 − ϕ)x − (ϕ)y < 0, then (1 − ϕ)x − (ϕ) (y + k ) ≤ (1 − ϕ)x − (ϕ)y < 0. In this case denote
x ′ = x and y ′ = y + k .
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In both cases, we found (x ′,y ′) such that x ′ + y ′ = r and the expression |(1 − ϕ)i − (ϕ)j | is
maximised for (i, j ) = (x ′,y ′). �

By substituting j = r − i into the error formula, we get:

|(1 − ϕ)i − (ϕ) (r − i ) | = |i − ϕr |.
As 0 ≤ ϕ ≤ 1, the following claim follows immediately:

Claim 3. For ϕ ≤ 0.5 the adversary maximises the distance by choosing i = r (and therefore j = 0)

and for ϕ > 0.5 the adversary maximises the error by choosing i = 0 (and therefore j = r ).

We begin by analysing the range given in Equation (6) for 0 ≤ ϕ ≤ 0.5.

Claim 4. For 0 ≤ ϕ ≤ 0.5 and i, j > 0 such that 0 ≤ i + j ≤ r and ϵ < 0.5, then: (1) (1−ϕ)i −ϕj +
ϵ (n − (i + j )) ≤ (1 − ϕ)r + ϵ (n − r ), and (2) ϕj − (1 − ϕ)i + ϵ (n − (i + j )) ≤ (1 − ϕ)r + ϵ (n − r ).

Proof. As ϕ ≤ 0.5, and ϵ � 0.5 then 1 − ϕ − ϵ > 0. As 0 ≤ i + j ≤ r , then i ≤ r .

f (i, j ) = (1 − ϕ)i − ϕj + ϵ (n − (i + j )) ≤ (1 − ϕ)i + ϵ (n − i ) ≤ (1 − ϕ − ϵ )i + ϵn (7)

≤ (1 − ϕ − ϵ )r + ϵn = (1 − ϕ)r + ϵ (n − r ) = f (r , 0). (8)

As ϕ ≤ 0.5, then ϕ ≤ 1 − ϕ, and as As 0 ≤ i + j ≤ r , then i ≤ r

ϕj − (1 − ϕ)i + ϵ (n − (i + j )) ≤ (1 − ϕ)j + ϵ (n − j ) ≤ (1 − ϕ)r + ϵ (n − r ). � (9)

We next analyse the same range for 0.5 < ϕ ≤ 1.

Claim 5. For 0.5 < ϕ ≤ 1 and i, j > 0 such that 0 ≤ i + j ≤ r and ϵ < 0.5, then: (1) ϕi − (1−ϕ)j +
ϵ (n − (i + j )) ≤ ϕr + ϵ (n − r ), and (2) (1 − ϕ)i − ϕj + ϵ (n − (i + j )) ≤ ϕr + ϵ (n − r ).

Proof. As ϕ > 0.5, and ϵ � 0.5 then ϕ − ϵ > 0. As 0 ≤ i + j ≤ r , then i ≤ r .

f (i, j ) = ϕi − (1 − ϕ)j + ϵ (n − (i + j )) ≤ ϕi + ϵ (n − i ) ≤ (ϕ − ϵ )i + ϵn ≤ ϕr + ϵ (n − r ) = f (r , 0).
(10)

As ϕ > 0.5, then (1 − ϕ) ≤ ϕ, and as As 0 ≤ i + j ≤ r , then i ≤ r

(1 − ϕ)i − ϕj + ϵ (n − (i + j )) ≤ ϕi + ϵ (n − i ) ≤ ϕr + ϵ (n − r ). � (11)

Putting the two claims together, we get:

Claim 6. For 0 ≤ ϕ ≤ 1 and i, j > 0 such that 0 ≤ i + j ≤ r and ϵ � 0.5, then: (1) ϕi − (1 − ϕ)j +
ϵ (n − (i + j )) ≤ r + ϵ (n − r ), and (2) (1 − ϕ)i − ϕj + ϵ (n − (i + j )) ≤ r + ϵ (n − r ).

Proof. From Claim 4, for 0 ≤ ϕ ≤ 0.5 then both inequalities are bounded by (1−ϕ)r + ϵ (n − r ),
and as ϕ ≥ 0 then (1 − ϕ)r + ϵ (n − r ) ≤ r + ϵ (n − r ).

From Claim 5, for 0.5 < ϕ ≤ 1 then both inequalities are bounded by ϕr + ϵ (n − r ), and as ϕ ≤ 1
then ϕr + ϵ (n − r ) ≤ r + ϵ (n − r ). �

Finally, we prove a bound on the rank of the element returned.

Lemma 10. Given parameters (ϵ,δ ) if ϵ < 0.5, then the r -relaxed quantiles sketch returns an

element whose rank is between (ϕ − ϵr )n and (ϕ + ϵr )n with probability at least 1 − δ , where ϵr =

ϵ − r ϵ
n
+ r

n
.

Proof. Given parameters (ϵ,δ ), and given that the adversary hides i elements below the ϕ
quantile and j elements above it, such that 0 ≤ i + j ≤ r , the rank of the element returned by the
query is in the range given in Equation (6) w.p. at least 1 − δ :[

ϕn − (ϕj − (1 − ϕ)i + ϵ (n − (i + j ))),ϕn + ((1 − ϕ)i − ϕj + ϵ (n − (i + j )))
]
.
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From Claim 6, this range is contained within the range:[
ϕn − (r + ϵ (n − r )),ϕn + (r + ϵ (n − r ))

]
.

Which can be rewritten as the range
(
ϕ ±

(
ϵ − r ϵ

n
+ r

n

))
n. Meaning the rank of the element re-

turned is between (ϕ −ϵr )n and (ϕ +ϵr )n with probability at least 1−δ , where ϵr = ϵ − r ϵ
n
+ r

n
. �

We have shown that the r -relaxed sketch returns an element whose rank is between (ϕ − ϵr )n
and (ϕ+ϵr )n with probability at least 1−δ , where ϵr = ϵ− r ϵ

n
+ r

n
. Thus, the impact of the relaxation

diminishes as n grows.

7.2.2 Count Unique Elements Error Bounds. Finally, we consider the error of any implementa-
tion of a count unique elements sketch, provided that the sketch is PAC. In this case, for a stream
with n unique elements, the query returns an estimate e that is in between (1 − ϵ )n and (1 + ϵ )n
with probability at least 1−δ for some parameters ϵ and δ . We show that the r -relaxation of such a
sketch returns an estimate is in the range (1±ϵr )n with probability at least 1−δ for ϵr = ϵ+ r ϵ

n
+ r

n
.

As in a Quantiles sketch, advance knowledge of the coin flip can increase the error already in
the sequential sketch. Therefore, here, too, we focus on a weak adversary. As above, the adversary
hides either no elements or r elements. If the adversary hides r elements, then the estimate returned
is in the range (1 ± ϵ ) (n − r ).

The adversary thus chooses whether to hide r elements or not based on which estimate max-
imises the error |n − e |. In either case, with probability at least 1 − δ the estimate is between
(1− ϵ ) (n − r ) and (1+ ϵ )n. This range is contained in the range n(1± (ϵ + r ϵ

n
+ r

n
)). We can define

ϵr � ϵ + r ϵ
n
+ r

n
. Note that, as in the case of the Quantiles sketch, here, too, the impact of the

relaxation diminishes as n grows.

8 Θ SKETCH EVALUATION

This section presents an evaluation of an implementation of our algorithm for the Θ sketch.
Section 8.1 presents the methodology for the analysis. Section 8.2 shows the results under dif-
ferent workloads and scenarios. Finally, Section 8.3 discusses the tradeoff between accuracy and
throughput.

8.1 Setup and Methodology

Our implementation [6] extends the code in Apache DataSketches [4], a Java open-source library
of stochastic streaming algorithms. The Θ sketch there differs slightly from the KMV Θ sketch we
used as a running example and is based on a HeapQuickSelectSketch family. In this version, the
sketch stores between k and 2k items, whilst keeping Θ as the k th largest value. When the sketch
is full, it is sorted and the largest k values are discarded.

Concurrent Θ sketch is generally available in the Apache DataSketches library since V0.13.0.
The sequential implementation and the sketch at the core of the global sketch in the concurrent
implementation are the both HeapQuickSelectSketch, which is the default sketch family.

We implement a limit for eager propagation as a function of the configurable error parameter ϵ ;
the function we use is 2/ϵ2. The local sketches define b as a function of k , ϵ , and N (the number of
writer threads) such that the error induced by the relaxation when in the lazy propagation mode
does not exceed e using Equation (4). Thus, the total error is bounded by max{ϵ + 1√

k
, 2√

k
}.

Eager propagation, as described in the pseudo-code, requires context switches incurring a high
overhead. In the implementation, either the local thread itself executes every update to the global
sketch (equivalent to a buffer size of 1) or lazily delegates updates to a background thread. While the
sketch is in eager propagation mode, the global sketch is protected by a shared Boolean flag. When
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the sketch switches to estimate mode it is guaranteed that no eager propagation gets through;
instead, local threads pass the buffer via lazy propagation. This implementation ensures that:
(a) local threads avoid costly context switches when the sketch is small, and (b) lazy propagation
by a background thread is done without synchronisation.

Unless stated otherwise, we use k = 4,096, which is commonly used [4] for the Θ sketch. The
sequential sketch’s RSE with this buffer size is 0.031 with a probability of at least 0.95. In the
concurrent sketch, we chose to limit the error to ϵ = 0.04 with the same probability. Given a
particular number of threads N , b is derived according to Equation (4) with r = 2Nb. Recall that
the analysis in Section 7.1 (including this equation) is conditioned on the assumption that n > k+r .
Therefore, if we would set the eager adaptation threshold to k + 2Nb, we would get the same error
bound for any sketch size. However, this is a conservative choice. We experiment with a threshold
of 1, 250 and show that, empirically, the error is reasonable with this choice. In general, this is a
configurable parameter, which can be used by system designers to navigate the tradeoff between
accuracy and performance.

Our first set of tests run on a 12-core Intel Xeon E5-2620 machine—this machine is similar to
that which is used by production servers. For the scalability evaluation (shown in the introduction),
we use a 32-core Intel Xeon E5-4650 to get a large number of threads. Both machines have hyper-
threading disabled, as it introduces non-monotonic effects among threads sharing a core.

We focus on two workloads: (1) write-only—updating a sketch with a stream of unique values;
(2) mixed read-write workload—updating a sketch with background reads querying the number of
unique values in the stream. Background reads refer to dedicated threads that occasionally (with
1 ms pauses) execute a query. These workloads simulate scenarios where updates are constantly
streaming from a feed or multiple feeds, while queries arrive at a lower rate.

To run the experiments, we employ a multi-thread extension of the characterisation framework.
This is the Apache DataSketch evaluation benchmark suite, which measures both the speed and
accuracy of the sketch.

For measuring write throughput, the sketch is fed with a continuous data stream. The size of the
stream varies from 1 to 8M unique values. For each size x , we measure the time t it takes to feed
the sketch x unique values and present it in terms of throughput (x/t ). To minimise measurement
noise, each point on the graph represents an average of many trials. Small stream sizes tend to
suffer more from measurement noise, so the number of trials is very high (in the millions). As
the stream size gets larger, the number of trials gradually decreases down to 16 in the largest
stream.

Note that accuracy is measured relative to the number of unique elements ingested to the sketch
before a query in some linearisation; because we cannot empirically deduce the linearisation point
of a query that is run in parallel with updates, the metric is only well-defined when the query
is not concurrent to any update. Therefore, we measure accuracy only in a single-thread envi-
ronment, where we periodically interleave queries with updates of the same thread. The accu-
racy with more threads can be extrapolated from these measurements based on the theoretical
analysis.

As in the performance evaluations, the x-axis represents the number of unique values fed into
the sketch by a single writing thread. For each size x , one trial logs the estimation result after
feeding x unique values to the sketch. In addition, it logs the Relative Error (RE) of the estimate,
where RE = MeasuredValue/TrueValue − 1. This trial is repeated 4K times, logging all estima-
tion and RE results. The curves depict the mean and some quantiles of the distributions of error
measured at each x-axis point on the graph, including the median. This type of graph is called a
“pitchfork.”
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8.2 Results

Accuracy results. Our first set of tests runs on a 12-core Intel Xeon E5-2620 machine. The accu-
racy results for the concurrent Θ sketch without eager propagation are presented in Figure 9(a).
There are two interesting phenomena worth noting. First, it is interesting to see empirical evalua-
tion reflecting the theoretical analysis presented in Section 7.1, where the pitchfork is distorted to-
wards underestimating the number of unique values. Specifically, the mean relative error is smaller
than 0 (showing a tendency towards underestimating), and the relative error in all measured quan-
tiles tends to be smaller than the relative error of the sequential implementation.

Second, when the stream size is less than 2k , Θ = 1 and the estimation is the number of values
propagated to the global sketch. If we forgo eager propagation, then the number of values in the
global sketch depends on the delay in propagation. The smaller the sketch, the more significant
the impact of the delay, and the mean error reaches as high as 94% (the error in the figure is
capped at 10%). As the number of propagated values approaches 2k , the delay in propagation
is less significant, and the mean error decreases. This excessive error is remedied by the eager
propagation mechanism. The maximum error allowed by the system is passed as a parameter to
the concurrent sketch, and the global sketch uses eager propagation to stay within the allowed
error limit. Figure 9(b) depicts the accuracy results when applying eager propagation. The figures
are similar when the sketch begins lazy propagation, and the error stays within the 0.04 limit as
long as eager propagation is used.

Write-only workload. Figure 10(a) presents throughput measurements for a write-only workload.
The results are shown in log log scale. Figure 10(b) zooms-in on the throughput of large streams.
As explained in Section 8.1, we compare the concurrent implementation to a lock-based approach.
The number of threads in both implementations refers to the number of worker threads; there can
be arbitrarily many reader threads.

When considering large stream sizes, the concurrent implementation scales with the number of
threads, peaking at almost 300M operations per second with 12 threads. The performance of the
lock-based implementation, however, degrades as the contention on the lock increases. At the peak
measured performance the single threaded concurrent Θ sketch outperforms the single threaded
lock based implementation by 12×, and with 12 threads by more than 45×.

For small streams, wrapping a single thread with a lock is the most efficient method. Once the
stream contains more than 200K unique values, using a concurrent sketch with 4 or more local
threads is more efficient. The crossing point where a single local buffer is faster than the lock-
based implementation is around 700K unique values.

Mixed workload. Figure 11 presents the throughput measurements of a mixed read-write work-
load. We compare runs with a single updating thread and 2 updating threads (and 10 background
reader threads). Although we see similar trends as in the write-only workload, the effect of back-
ground readers is more pronounced in the lock-based implementation than in the concurrent one;
this is expected, as the reader threads compete for the same lock as the writers. The peak through-
put of a single writer thread in the concurrent implementation is 55M ops/sec both with and with-
out background readers. The peak throughput of a single writer thread in the lock-based imple-
mentation degrades from 25M ops/sec without background reads to 23M ops/sec with them; this
is an almost 10% slowdown in performance. Recall that in this scenario reads are infrequent, and
so the degradation is not dramatic.

Scalability results. To provide a better scalability analysis, we aim to maximise the number of
threads working on the sketch. Therefore, we run this test on a larger machine—we use a 32-core
Xeon E5-4650 processors. We ran an update-only workload in which a sketch is built from a very
large stream, repeating each test 16 times.
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Fig. 9. Concurrent Θ measured quantiles vs. RE, k = 4,096.

In Figure 3 (in the introduction), we compare the scalability of our concurrent Θ sketch and the
original sketch wrapped with a read/write lock in an update-only workload, forb = 1 andk = 4,096.
As expected, the lock-based sequential sketch does not scale, and in fact it performs worse when
accessed concurrently by many threads. In contrast, our sketch achieves almost perfect scalability.
Θ quickly becomes small enough to allow filtering out most of the updates and so the local buffers
fill up slowly.

8.3 Accuracy-throughput Tradeoff

The speedup achieved by eager propagation in small streams is presented in Figure 12. This is an
additional advantage of eager propagation in small streams, beyond the accuracy benefit reported
in Figure 9. The improvement is as high as 84× for tiny sketches and tapers off as the sketch grows.
The slowdown in performance when the sketch size exceeds 2K can be explained by the reduction
in the local buffer size (from b = 16 to b = 5), needed to accommodate for the required error bound.
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Fig. 10. Write-only workload, k = 4,096, ϵ = 0.04.

Next, we discuss the impact of k . One way to increase the throughput of the concurrent Θ
sketch is by increasing the size of the global sketch, namely, increasing k . However, this change
also increases the error of the estimate. Table 3 presents the tradeoffs between performance and
accuracy. Specifically, it presents the crossing-point, namely, the smallest stream size for which
the concurrent implementation outperforms the lock-based implementation (both running a single
thread). It further presents the maximum values (across all stream sizes) of the median error and
99th percentile error for a variety of k values. The table shows that as the sketch promises a smaller
error (by using a larger k), a larger stream size is needed to justify using the concurrent sketch
with all its overhead.
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Fig. 11. Mixed workloads: writers with background reads, k = 4,096, ϵ = 0.04.

Fig. 12. Throughput speedup of eager (ϵ = 0.04) vs. no-eager (ϵ = 1.0) propagation, k = 4,096.

9 CONCLUSIONS

Sketches are widely used by a range of applications to process massive data streams and answer
queries about them. Library functions producing sketches are optimised to be extremely fast, often
digesting tens of millions of stream elements per second. We presented a generic algorithm for
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Table 3. Performance vs. Accuracy as a Function of k

thpt crossing point mean error error Q = 0.99
k = 256 15,000 0.16 0.27
k = 1,024 100,000 0.05 0.13
k = 4,096 700,000 0.03 0.05

parallelising such sketches and serving queries in real-time; the algorithm is strongly linearisable
with regards to relaxed semantics. We showed that the error bounds of two representative sketches,
Θ and Quantiles, do not increase drastically with such a relaxation. We also implemented and
evaluated the solution, showed it to be scalable and accurate, and integrated it into the open-source
Apache DataSketches library. While we analysed only two sketches, future work may leverage our
framework for other sketches. Furthermore, it would be interesting to investigate additional uses
of the hint, for example, to dynamically adapt the size of the local buffers and respective relaxation
error.

APPENDIX

A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains all the JARs of version 0.12 of the DataSketches library, before it moved into
Apache (Incubating), as well as configurations and shell scripts to run our tests. It can support the
results found in the evaluated section of our PPoPP’2020 paper Fast Concurrent Data Sketches. To
validate the results, run the test scripts and check the results piped in the according text output
files.

A.2 Artifact Check-list (Meta-information)

• Algorithm: Θ Sketch

• Program: Java code

• Compilation: JDK 8, and each package is compiled using maven

• Binary: Java executables

• Runtime environment: Java

• Hardware: Ubuntu on 12 core server and 32 core server with hyperthreading disabled

• Metrics: Throughput and accuracy

• Output: Runtime throughputs, and runtime accuracy

• How much time is needed to prepare workflow (approximately)?: Using precompiled pack-

ages, none.

• How much time is needed to complete experiments (approximately)?: Many hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache License 2.0

A.3 Description

A.3.1 How Delivered. We have provided all the JAR files we used for running our tests, along with scripts.
Meanwhile, the project has migrated to the Apache DataSketches (Incubating) library, which is an open source
project under Apache License 2.0 and is hosted with code, API specifications, build instructions, and design
documentations on Github.

A.3.2 Hardware Dependencies. Our tests require a 12-core Intel Xeon E5-2620 machine and four Intel
Xeon E5-4650 processors, each with 8 cores. Hyper-threading is disabled on both machines..

A.3.3 Software Dependencies. Building and running the JAR files requires JDK 8; the files do not compile
otherwise. To use the automated scripts, we require python3 and git to be installed. The Apache DataSketches

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 6. Publication date: April 2022.



6:32 A. Rinberg et al.

(Incubating) library has been tested on Ubuntu 12.04/14.04 and is expected to run correctly under other Linux
distributions.

A.4 Installation

First, clone the repository:

$ git clone https://github.com/ArikRinberg/FastConcurrentDataSketchesArtifact

We have provided the necessary JAR files for recreating our experiment in the repository.

A.5 Experiment Workflow

(1) After cloning the repository:

$ cd FastConcurrentDataSketchesArtifact

In the current working directory, there should be the following JAR files:
• memory-0.12.1.jar
• sketches-core-0.12.1-SNAPSHOT.jar
• characterization-0.1.0-SNAPSHOT.jar

(2) Next, run the tests:

$ python3 run_test.py TEST

Where TEST is one of the following: figure_1, figure_6_a, figure_6_b, figure_7, figure_8, figure_9, or
table_2.

(3) The results of each test will be in txt files in the current working directory, either SpeedProfile or
AccuracyProfile:

SpeedProfile: The txt file contains three columns: InU—the number of unique items (the x axis of most
graphs), Trials—the number of trials for this run, nS/u—nano seconds per update. The y axis of the
throughput graphs is given as updates per second, therefore a conversion is needed.

AccuracyProfile: The txt file contains the columns corresponding to the figure legend, where InU is
the number of unique items. And, for example, Q (.5) corresponds to the 50th precentile.

A.6 Figure Creation

The test outputs will be in the form of txt files output to the current working directory. To create the graphs, we
have provided scripts that extract the data from these files. The following scripts correspond to the following
figures:

• Figure 3 – parseFigure1.py
• Figure 9 – parseAccuracy.py
• All other figures – parseThroughput.py

To use the figures, pass the txt output files to the corresponding script.

A.7 Experiment Customization

Each curve in each experiment is customised in the corresponding configure file. The main customisations
for the conf files are:

• Trials_lgMinU / Trials_lgMaxU: Range of number of unique numbers over which to run the test.
• LgK: Log size of the global sketch.
• CONCURRENT_THETA_localLgK: Log size of the local sketch.
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• CONCURRENT_THETA_maxConcurrencyError: Maximum error due to concurrency. For non-
eager tests, set to 1.
• CONCURRENT_THETA_numWriters: Number of writer threads.
• CONCURRENT_THETA_numReaders: Number of background reader threads. For our mixed

workload, we used 10 reader threads.
• CONCURRENT_THETA_ThreadSafe: Is true if the test should use the concurrent implementation,

false if the test should use a lock-based implementation.

A.8 Working with Source Files

Alternatively, follow the build instructions on Apache DataSketches (Incubating) Apache page (https://
datasketches.apache.org/) to build the above-mentioned JAR files, now called:

• incubator-datasketches-java (https://github.com/apache/incubator-datasketches-java)
• incubator-datasketches-memory (https://github.com/apache/incubator-datasketches-memory)
• incubator-datasketches-characterization (https://github.com/apache/incubator-datasketches-

characterization)

The version number of incubator-datasketches-java and incubator-datasketches-memory must comply with
the version numbers required by incubator-datasketches-characterization. The characterization JAR file is an
unsupported open-source code base and does not pretend to have the same level of quality as the primary
repositories. These characterization tests are often long running (some can run for days) and very resource-
intensive, which makes them unsuitable for including in unit tests. The code in this repository are some of
the test suites we use to create some of the plots on our website and provide evidence for our speed and accu-
racy claims. Alternatively, the datasketches-memory and datasketches-java releases are provided from Maven
Central using the Nexus Repository Manager. Go to repository.apache.org and search for “datasketches.”

For convenience, we have included these repositories as modules in our main repository along with specific
branches and commit id’s that are known to compile. To compile the jar files:

$ git clone https://github.com/ArikRinberg/FastConcurrentDataSketchesArtifact
$ cd FastConcurrentDataSketchesArtifact
$ source customCompile.sh

The shell script takes care of initialising the submodules, building the source files, and copying the correct
JAR files to the current directory.

Workflow for custom JAR files.

(1) After cloning the repository:

$ cd FastConcurrentDataSketchesArtifact

In the current working directory, there should be the following JAR files:
• datasketches-memory-1.1.0-incubating.jar
• datasketches-java-1.1.0-incubating.jar
• datasketches-characterization-1.0.0-incubating-SNAPSHOT.jar

(2) For each .conf file in the conf_files folder, the following line must be altered:
From: JobProfile=
com.yahoo.sketches.characterization.uniquecount.TEST
To: JobProfile=
org.apache.datasketches.characterization.theta.concurrent.TEST
Where TEST is either ConcurrentThetaAccuracyProfile or ConcurrentThetaMultithreadedSpeedPro-
file.
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(3) Finally, the following line must be altered in run_test.py:
From: CMD=
‘java -cp “./*” com.yahoo.sketches.characterization.Job ’
To: CMD=‘java -cp “./*” org.apache.datasketches.Job ’

(4) The tests can now be run as explained in Item 3.
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