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Scalable Pattern Matching in Metadata Graphs via

Constraint Checking
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Pattern matching is a fundamental tool for answering complex graph queries. Unfortunately, existing solu-

tions have limited capabilities: They do not scale to process large graphs and/or support only a restricted set

of search templates or usage scenarios. Moreover, the algorithms at the core of the existing techniques are

not suitable for today’s graph processing infrastructures relying on horizontal scalability and shared-nothing

clusters, as most of these algorithms are inherently sequential and difficult to parallelize.

We present an algorithmic pipeline that bases pattern matching on constraint checking. The key intuition is

that each vertex and edge participating in a match has to meet a set of constraints implicitly specified by the

search template. These constraints can be verified independently and typically are less expensive to compute

than searching the full template. The pipeline we propose generates these constraints and iterates over them

to eliminate all the vertices and edges that do not participate in any match, thus reducing the background

graph to a subgraph that is the union of all template matches—the complete set of all vertices and edges that

participate in at least one match. Additional analysis can be performed on this annotated, reduced graph,

such as full match enumeration, match counting, or computing vertex/edge centrality. Furthermore, a vertex-

centric formulation for constraint checking algorithms exists, and this makes it possible to harness existing

high-performance, vertex-centric graph processing frameworks.

This technique (i) enables highly scalable pattern matching in metadata (labeled) graphs; (ii) supports

arbitrary patterns with 100% precision; (iii) enables tradeoffs between precision and time-to-solution, while

always selects all vertices and edges that participate in matches, thus offering 100% recall; and (iv) supports

a set of popular data analytics scenarios. We implement our approach on top of HavoqGT, an open-source

asynchronous graph processing framework, and demonstrate its advantages through strong and weak scaling

experiments on massive scale real-world (up to 257 billion edges) and synthetic (up to 4.4 trillion edges)

labeled graphs, respectively, and at scales (1,024 nodes / 36,864 cores), orders of magnitude larger than used

in the past for similar problems.

This article serves two purposes: First, it synthesises the knowledge accumulated during a long-term

project [Reza et al. 2017, 2018; Tripoul et al. 2018]. Second, it presents new system features, usage scenarios,

optimizations, and comparisons with related work that strengthen the confidence that pattern matching

based on iterative pruning via constraint checking is an effective and scalable approach in practice. The

new contributions include the following: (i) We demonstrate the ability of the constraint checking approach
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to efficiently support two additional search scenarios that often emerge in practice, interactive incremental

search and exploratory search. (ii) We empirically compare our solution with two additional state-of-the-art

systems, Arabsque [Teixeira et al. 2015] and TriAD [Gurajada et al. 2014]. (iii) We show the ability of our

solution to accommodate a more diverse range of datasets with varying properties, e.g., scale, skewness,

label distribution, and match frequency. (iv) We introduce or extend a number of system features (e.g.,

work aggregation, load balancing, and the ability to cap the generated traffic) and design optimizations

and demonstrate their advantages with respect to improving performance and scalability. (v) We present

bottleneck analysis and insights into artifacts that influence performance. (vi) We present a theoretical

complexity argument that motivates the performance gains we observe.
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→ Data mining; • Mathematics of computing → Graph algorithms;
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1 INTRODUCTION

Pattern matching in labeled graphs, that is, finding subgraphs that match a small template graph

within a large background graph, is fundamental to graph analysis and has applications in social
network analysis [Fan et al. 2010, 2013; Gupta et al. 2014; Tong et al. 2007], bioinformatics [Alon
et al. 2008], anomaly and fraud detection [Iyer et al. 2018], program analysis [Lo et al. 2009], as
well as in various machine learning contexts [Grover and Leskovec 2016; Henderson et al. 2012].
A match can be broadly categorized as either exact (i.e., there is a bijective mapping between the
vertices/edges in the template and those in the matching subgraph) or approximate (the template
and the match are just similar by some defined similarity metric) [Bunke and Allermann 1983;
Conte et al. 2004; Zhang et al. 2010].

Unfortunately, existing pattern matching solutions (related work in Section 2) have limited ca-
pabilities: (i) They do not scale to the massive graphs with hundreds of billions of edges commonly
mined nowadays, (ii) they often support only a restricted set of search templates or usage scenar-
ios, and (iii) they rely on algorithms that are not suitable for implementation on top of today’s
graph processing infrastructures that aim at horizontal scalability and shared-nothing clusters, as
most of these algorithms are inherently sequential and difficult to parallelize [Mckay and Piperno
2014; P. Cordella et al. 2004; Ullmann 1976].

We propose a new algorithmic pipeline based on constraint checking. This approach is moti-
vated by viewing the search template as specifying a set of constraints the vertices and edges that
participate in a match must meet. The pipeline iterates over these constraints to eliminate all and
only the vertices and edges that do not participate in any match. The intuition for the effectiveness
of this technique stems from four key observations:

(i) First, the traditionally used graph exploration techniques [Han et al. 2014; P. Cordella et al.
2004; Shang et al. 2008; Ullmann 1976] generally attempt to enumerate all matches through explicit
search. When an exploration branch fails, it has to be marked invalid and ignored in the subsequent
steps. In the same vein as past works that use graph pruning [Lulli et al. 2017; Zhou et al. 2012]
or, more generally, input reduction [Kusum et al. 2016], we observe that it is much cheaper to
focus on eliminating the vertices and edges that do not meet the label and topological constraints
introduced by the search template. One key contribution of this work is a pruning-based solution
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Fig. 1. An example of a background graph G (center), template G0 (left), and the output—the solution sub-
graph G∗ after vertex and edge elimination (right). The output is a refined set of vertices and edges that
participate in at least one subgraphH that matches G0. Here (and in the rest of the article), vertex metadata
are presented as colored shapes. The eliminated vertices and edges are colored solid grey. (Reused from Reza
et al. [2018].)

that eliminates all and only the vertices and edges that do not participate in any match, limits the

exponential growth of the algorithm state, scales to massive graphs and distributed memory machines

with a large number of processing elements, and supports arbitrary search templates. The result of
pruning is the complete set of all vertices and edges that participate in at least one match, with no

false positives or false negatives. Figure 1 illustrates the general idea using an example graph and
a search template.

(ii) Second, we observe that full match enumeration is not the most efficient avenue to support
many high-level graph analysis scenarios. Depending on the final goal of the user, pattern match-
ing problems fall into a number of categories that include the following: (a) determining if a match
exists in the background graph (yes/no answer), (b) selecting all the vertices and edges that par-
ticipate in matches, (c) ranking these vertices or edges based on their centrality with respect to the

search template, e.g., the frequency of their participation in matches, (d) counting/estimating the
total number of matches, or (e) enumerating all distinct matches in the background graph. The
traditional approach [P. Cordella et al. 2004; Ullmann 1976] is to first enumerate the matches (cat-
egory (e) above) and to use the result to answer (a)–(d). However, this approach is limited to small
background graphs or is dependent on a low number of near and exact matches within the back-
ground graph (due to exponential growth of the algorithm state). Our experiments suggest that
that a pruning-based approach is not only a practical solution to scenarios (a)–(d) (and to other pat-
tern matching related analytics) but also an efficient path toward full match enumeration in large
graphs. There are three reasons for the effectiveness of this approach: First, the pruned graph can
be multiple orders of magnitude smaller than the background graph, and existing high-complexity
enumeration routines thus become applicable. Second, our pruning techniques collect additional
key information to accelerate match enumeration—for each vertex in the pruned graph, our algo-
rithms build a list of its possible match(es) in the template. Last, the intermediate algorithm state
is much smaller.

(iii) Third, such pruning approach lends itself well to developing a vertex-centric algorithmic so-
lution, and this makes it possible to harness existing high-performance, vertex-centric frameworks
(e.g., GraphLab [Gonzalez et al. 2012], Giraph [Giraph 2016], or HavoqGT [Pearce et al. 2014]). In
our vertex-centric formulation for pruning, a vertex must satisfy two types of constraints, namely,
local and non-local, to possibly be part of a match. Local constraints involve only the vertex and its
neighborhood: A vertex in an exact match needs to (a) match the label of a corresponding vertex in
the template and (b) have edges to vertices labeled as prescribed in the adjacency structure of this
corresponding vertex in the search template. Non-local constraints are topological requirements
beyond the immediate neighborhood of a vertex (e.g., that the vertex must be part of a cycle).
We describe how these constraints are generated, and our algorithmic solution to verify them in
Section 4.
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(iv) Finally, decomposing the search template in a set of constraints enables, in addition to ex-

act matching, efficiently supporting a number of additional usage scenarios. These include the
following: (a) Tradeoffs between precision and time-to-solution as search can be stopped early af-
ter checking only a subset of the constraints, leading to lower precision in the solution set (Reza
et al. [2018], Section 5E); (b) incremental searches, an interactive search scenario where the user
incrementally updates the search template (while the system takes advantage of the existence of
common constraint(s) in the past and the updated search template, to offer fast response time)
(Section 7.7); (c) exploratory search, a search scenario where the user presents an over-constrained
search template that may not have any match, and the system finds the “nearest” matches (e.g.,
the ones that satisfy most of the constraints of the original search template) (Section 7.7); and,
finally, (d) approximate searches based on edit-distance [Bunke and Allermann 1983; Reza et al.
2020a; Zhang et al. 2010].

Contributions. This article serves two goals: First, it is a synthesis of an ongoing long-term
project [Reza et al. 2017, 2020a, 2020b, 2018; Tripoul et al. 2018], and, second, it presents new
system features, usage scenarios, empirical experiments, and comparisons with related projects
that strengthen the confidence that pattern matching based on iterative pruning via constraint
checking is an effective and scalable approach.

Summary of Previously Published Work. We have introduced the constraint checking approach
and discussed the opportunities it presents to pattern matching in large-scale graphs in a prelim-
inary study [Reza et al. 2017]. This study focused on the exact matching scenario only and a re-
stricted set of search templates: acyclic or edge-monocyclic with unique vertex labels (see Section 3
for definitions). A key contribution of this preliminary study proving that, for some templates,
only inexpensive local constraint checking is sufficient for a precise solution. Following this ini-
tial investigation, we introduced PruneJuice (PJ) [Reza et al. 2018], a distributed system for exact
pattern matching that is generic (no restrictions on the set of patterns supported), precise (no false
positives), offers 100% recall (retrieves all matches), is efficient (small algorithm state ensuring low
generated network traffic), and is scalable (able to process graphs with up to trillions of edges on
tens of thousands of cores). Here, also the focus was the exact matching scenario only. Strong
and weak scaling experiments using massive background graphs and scaling to up to 1,024 nodes
(36,864 cores), confirmed the scalability of this approach. We demonstrated that, depending on the
input, pruning leads to a solution subgraph that can be orders of magnitude smaller than the origi-
nal background graph, which enables match enumeration and counting in massive graphs. While
this study used simple heuristics to select and order constraints, we have demonstrated the effec-
tiveness of advanced heuristics for constraint selection and ordering in the context of a shared
memory implementation in Tripoul et al. [2018]. At the level of system architecture and imple-
mentation, the following key design ingredients make our system successful: asynchronicity and
aggressive vertex and edge elimination while harnessing massive parallelism, intelligent work ag-
gregation to ensure low message overhead, and lightweight per-vertex state. While in this article
we focus on exact matching and closely associated scenarios, we have shown the finer granularity
a constraint-based approach facilitates, can enable a version of approximate matching based on
edit-distance [Reza et al. 2020a].

Summary of New Contributions. While one goal of this manuscript is to synthesize and organize
the experience we have acquired during this project, it also includes an entirely new evaluation
section, and original material as follows.

(i) Demonstrating Support for a Diverse Set of Graph Analytics Scenarios (Section 7.7). We show
the ability of our approach to efficiently support an exploratory search scenario where the
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user starts form an over-constrained search template the system progressively relaxes the
search until matches are found. We also present an overview of an interactive incremental

search that supports the following usage scenario: The user may not know exactly what
(s)he is looking for and, based on returned results, will incrementally revise the search tem-
plate, possibly multiple times. Two high-level features presented by the exact matching
pipeline are essential to support these additional scenarios: First, decomposing the search
template into a set of constrains enables partial result reuse; second, a prunning-based ap-
proach makes it natural to focus on the part of the data of interest thus improving locality
and reducing generated network traffic. We discuss the unique design optimizations enabled
by the constraint checking approach to support these scenarios and demonstrate their ef-
fectiveness through experiments on massive graphs.

(ii) Comparison with State-of-the-Art Systems (Section 7.8). We extensively compare our work
with two additional state-of-the art distributed solutions, Arabesque [Teixeira et al. 2015]
(Section 7.8.3) and TriAD [Gurajada et al. 2014] (Section 7.8.2), in multiple scenarios (match
enumeration and counting) and using labeled and unlabeled templates and multiple real-
world graphs. These experiments demonstrate the significant advantages our system offers
when handling large graphs and complex labeled or unlabeled patterns.

(iii) Additional System Optimizations and Experiments Using New Datasets. We have further
added a number of optimizations aimed at enhancing performance, scalability, robustness,
and efficiency. These include the following: work aggregation, a light-weight yet highly ef-
fective technique to prevent relaying duplicate messages (Section 5); load balancing (Sec-
tion 7.6); and the ability to control the processing rate to lower memory pressure. We
demonstrate that these techniques offer multitude of performance gains as well as robust-
ness when processing at a massive scale (Section 7.5, Section 7.6, and Reza et al. [2018]).
The extended evaluation includes new real-world graphs and three synthetic graphs with
varying topology, skewness, and degree distribution and several new search templates, both
labeled and unlabeled (Section 7.4).

(iv) Bottleneck Analysis and Insights into Artifacts That Influence Performance. We present exper-
iments that uncover artifacts that influence performance along multiple axes. We explore
the artifacts that cause load imbalance (Section 7.6); and we investigate the influence of
search template and background graph properties (e.g., label distribution and topology) on
runtime performance (Section 7.9 and Section 7.10).

(v) Complexity Analysis (Section 6). We present runtime, message count, and storage complex-
ity of the core constraint checking algorithms. We also present a theoretical complexity
argument that motivates the performance gains we observe.

2 RELATED WORK

The volume of related work on graph processing in general [Giraph 2016; Gonzalez et al. 2012, 2014;
Hong et al. 2015; Malewicz et al. 2010; Sundaram et al. 2015], and on pattern matching algorithms
in particular [Berry et al. 2007; Fan et al. 2013; Mckay and Piperno 2014; P. Cordella et al. 2004;
Ullmann 1976; Zhu et al. 2011], is humbling. We summarize closely related work in Table 1.

2.1 General Algorithmic Approaches for Exact Pattern Matching

Early work on graph pattern matching mainly focused on solving the graph isomorphism problem
[Ullmann 1976]. The well-known Ullmann’s algorithm [Ullmann 1976] and its improvements (in
terms of join order, pruning strategies, and space complexity), e.g., VF2 [P. Cordella et al. 2004]
and QuickSI [Shang et al. 2008], belong to the family of tree-search-based algorithms. Ullman pro-
posed a backtracking algorithm that finds exact matches by incrementing partial solutions and
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Table 1. Comparison of Past Work on Distributed Pattern Matching

Contribution Model Framework/ Match Max. Query Metadata #Compute Max. Real Max. Synthetic

Language Type Size Nodes Graph Graph

Arabesque [Teixeira et al. 2015] Tree-search Spark Exact 10 edges N/A 20 887M edges N/A

QFrag [Serafini et al. 2017] Tree-search Spark Exact 7 edges Real 10 117M edges N/A

Fractal [Dias et al. 2019] Tree-search Spark Exact 10 edges Real 10 44M edges N/A

PGX.D/Async [Roth et al. 2017] Async. DFS Java/C++ Exact 4 edges Synthetic 32 N/A 2B edges (Unif. rand.)

G-Miner [Chen et al. 2018] Tree-search C++ Exact 4 edges N/A 15 1.8B edges N/A

Sun et al. [Sun et al. 2012] Subgraph Indexing C#.Net4 Exact 30 edges Synthetic 12 16.5M edges 4B vertices

Plantenga [Plantenga 2013] Tree-search Hadoop Approximate 4-Clique Real 64 107B edges R-MAT Scale 20

SAHAD [Zhao et al. 2012] Color-coding Hadoop Approximate 12 vertices Synthetic 40 N/A 269M edges

FASCIA [Slota and Madduri 2014] Color-coding MPI Approximate 12 vertices N/A 15 117M edges 1M edges (Erdős-Rényi)

Chak. et al. [Chakaravarthy et al. 2016] Color-coding MPI Approximate 10 vertices N/A 512 (BG/Q) 2.7M edges R-MAT

Gao et al. [Gao et al. 2014] Subgraph Indexing Giraph Approximate 50 vertices Synthetic 28 3.7B edges N/A

Ma et al. [Ma et al. 2012] Graph Simulation Python Approximate 15 vertices Type only 16 5.1M edges 100M vertices

Fard et al. [Fard et al. 2013] Graph Simulation GPS Approximate N/A N/A 8 300M edges N/A

ASAP [Iyer et al. 2018] Neighborhood Sampling Spark Probabilistic 6 edges N/A 16 3.7B edges N/A

Yuan et al. [Yuan et al. 2015] Tree-search/Join Java Exact 17 edges N/A 17 1.4B edges 64M vertices

The table highlights the characteristics of the solution presented (exact vs. approximate matching), its implementation

infrastructure, and summarizes the details of the largest-scale experiment performed. We highlight the fact that our

solution is unique in terms of demonstrated scale, ability to perform exact matching, and ability to retrieve all matches.

uses heuristics to prune unprofitable paths. VF2 improves the time and space complexity over
Ullman’s algorithm. The algorithm uses a heuristic that is based on the analysis of the vertices
adjacent to vertices that have been included in a partial solution. The VF2 algorithm is known to
be robust and performs well in practice and consecutively has been included in the popular Boost
Graph Library (BGL) [BGL 2017]. A recent effort, TurboISO [Han et al. 2013], is considered to be
the most optimized among the tree-search-based sequential subgraph isomorphism techniques.
(Note that the pattern search can be performed in a depth-first or a breadth-first manner. The
naïve pattern matching technique recursively searches the full template from each vertex in the
background graph in a depth-first manner. The tree-search algorithms are merely optimizations
of the depth-first search technique.)

For large graphs, a tree search may fail midway and needs to backtrack, and, hence, this tech-
nique can be expensive. Efficient distributed implementation of this approach is difficult for a
number of reasons: Existing algorithms are inherently sequential and difficult to parallelize. Fur-
thermore, a key limitation of this technique is that the number of possible join operations (the
process of adding a graph edge to an intermediate match) is combinatorially large; which makes
its application to generic patterns and massive graphs, with billions or trillions of edges, impracti-
cal. Also, the above algorithms use heuristics for join order selection [Han et al. 2013], as a result,
often the performance is sensitive to the graph topology, label frequency, and relies on expensive
preprocessing for join order optimization, such as sorting the neighbor vertices by degree.

Perhaps the best known exact matching algorithm that does not belong to the family of tree-
search algorithms is Nauty due to McKay [Mckay and Piperno 2014], which is based on canon-

ical labeling of the graph. This approach, however, has high preprocessing overhead. Nauty can
perform verification for isomorphism in O (n2) time (where n is the number of vertices in the
background graph), however, transforming arbitrary input graphs to the canonical form requires
exponential time [Miyazaki 1997].

In the same spirit as database indexing, subgraph indexing (i.e., indexing of frequent subgraph
structures) is an approach attempted to reduce the number of join operations (between subgraph
structures) and to lower query response time, e.g., SpiderMine [Zhu et al. 2011], R-Join [Cheng
et al. 2008], C-Tree [He and Singh 2006], SAPPER [Zhang et al. 2010], TriAD [Gurajada et al.
2014], and the contributions by Sun et al. [2012] and Gao et al. [2014]. Unfortunately, for a billion
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edge graph, this approach is infeasible to generalize: First, searching frequent subgraphs in a large
graph is notoriously expensive. Second, depending on the topology of the search template(s) and
the background graph, the size of the index is often superlinear relative to the size of the graph [Sun
et al. 2012].

2.2 Distributed Pattern Matching Solutions

We review a number of projects that offer pattern matching on a shared-nothing architecture aim-
ing either to reduce time-to-solution or to scale to search in large background graphs. Table 1
summarizes the key differentiating aspects and the scale achieved. Below we group the contribu-
tions into exact and approximate matching categories.

Solutions Offering Exact Matching. Arabesque [Teixeira et al. 2015] is a distributed frame-
work offering precision and recall guarantees, implemented on top of Apache Spark [Spark 2017]
and Giraph [Giraph 2016]. Arabesque provides an API based on the Think Like an Embedding
(TLE) paradigm, to express graph mining algorithms and a Bulk Synchronous Parallel (BSP) im-
plementation of the embedding (pattern) search engine (which follows the tree-search approach
for match enumeration and counting). Arabesque replicates the input graph on all worker nodes,
hence, the largest graph scale it can support is limited by the size of the memory of a single
node (the implementation also exploits HDFS storage to maintain partially computed embeddings).
Through evaluation using several real-world graphs, Teixeira et al. [2015] showed Arabesque’s su-
periority over other two key systems: G-Tries [Ribeiro and Silva 2014] and GRAMI [Elseidy et al.
2014]. In Section 7.8.3, we directly compare our work with Arabesque.

QFrag [Serafini et al. 2017] is a general purpose exact pattern matching system, built on top of
Arabesque. Similar to Arabesque, QFrag assumes that the entire graph fits in the memory of each
compute node and uses data replication to enable search parallelism. QFrag employs a sophisti-
cated load balancing strategy to reduce time-to-solution. In QFrag, each replica runs an instance of
the tree-search-based pattern enumeration algorithm, TurboISO [Han et al. 2013] (an improvement
of Ullmann’s algorithm [Ullmann 1976]). Through evaluation, the authors demonstrated QFrag’s
performance advantages over two other distributed pattern matching systems: TriAD [Gurajada
et al. 2014], an MPI-based distributed Resource Description Framework (RDF) [RDF 2017] engine
based on an asynchronous distributed join algorithm, and GraphFrames [Dave et al. 2016; Graph-
Frames 2017], a graph processing library for Apache Spark, also based on distributed join oper-
ations. Although Arabesque and QFrag outperform most of their competitors in terms of time-
to-solution, they replicate the entire graph in the memory of each compute node, which limits
their applicability to relatively small graphs. In Section 7.8.1 and Section 7.8.2, we present direct
comparison of our work with QFrag and TriAD, respectively.

Similarly to Arabesque, G-Miner [Chen et al. 2018] offers a high-level API for implementing
graph mining algorithms; however, its applicability seems to be restricted to a limited scenarios
as evaluation results were presented only for counting triangles and small cliques. A new frame-
work Fractal [Dias et al. 2019], also based on the TLE abstraction, addresses several limitations of
Arabesque to offer improved performance and memory efficiency.

PGX.D/Async [Roth et al. 2017] is a distributed system by Oracle Labs offering exact matching. It
relies on asynchronous depth-first traversal for match enumeration. PGX.D/Async offers an MPI-
based implementation and incorporates a flow control mechanism with a deterministic guarantee
of search completion under a finite amount of memory; however, compared to our work, was
demonstrated at a much smaller scale, in terms of graph sizes and number of compute nodes.

Sun et al. [2012] present an exact subgraph matching solution that follows the tree-search and
join approach and demonstrate it on large synthetic graphs, using larger search templates than
in Plantenga [2013], yet not on real-world graphs. Also, the authors mentioned that they terminate
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the search after the match-count have reached a predefined threshold that was set to 1,024 in their
experiments (i.e., does not offer recall guarantees).

The Graph database Engine for Multithreaded Systems (GEMS), a framework for implement-
ing RDF databases on distributed platforms [Castellana et al. 2015] supports SPARQL and GraQL
queries, as well as user queries written in C++. GEMS exploits the Partitioned Global Address
Space (PGAS) programming model: PGAS exposes the distributed memory of cluster nodes with
a shared memory abstraction [Morari et al. 2015]. The GEMS runtime engine manages parallelism
supporting thousands of lightweight parallel tasks per node. The authors have shown GEMS scal-
ability using an RDF dataset with up to 10 billion triples on up to 128 compute nodes on an High
Performance Computing (HPC) platform [Morari et al. 2015]. GraQL is a query language for GEMS
that address a number of limitations of typical relational and native graph abstractions for sup-
porting the Property Graph model [Chavarría-Miranda et al. 2016]. Choudhury et al. [2015] also
explored the problem of pattern matching in streaming graphs within GEMS and evaluated their
solution using acyclic search templates.

A number of projects on high-performance pattern matching, primarily target genome sequenc-
ing/assembly problems. In Low et al. [2007], the authors present a solution for multiple sequence
alignment for handling a large number of protein sequences on a distributed platform with the
mesh topology. The technique divides the computational load among compute nodes as opposed
to dividing a protein sequence among compute nodes, with the goal of maximizing throughput.
In Liu et al. [2013], a parallel sequence assembly solution for multi-core shared memory platforms
is presented: the solution incorporates a suffix array-based data structure and can efficiently
handle a large number of reads. In Yin et al. [2016], an improved technique for median computa-
tion in gene matching (or difference computation) is proposed: the solution models the problem
in a manner that enables harnessing subgraph matching and search space reduction, toward
offering efficiency. Makkar et al. [2017] presents a GPU-based solution for triangle counting in
dynamic graphs. The authors presented an inclusion-exclusion formulation for the problem that
correctly counts the number of triangles; the solution also improves complexity bounds over prior
approaches. Green et al. [2018] presents Logarithmic Radix Binning for triangle counting; the
work presents a multi-threaded and vectorized solution that also eliminates branch misprediction.

Solutions Targeting Approximate Matching. The best demonstrated scale is offered
by Plantenga [2013]: a MapReduce implementation of the walk-based algorithm for identifying
type-isomorphic (approximate) matches, originally proposed in Berry et al. [2007]. Plantenga intro-
duced the idea of walk-level constraints to type-isomorphism—the added constraints are expected
to reduce the search space of candidate walks

SAHAD [Zhao et al. 2012] is a MapReduce implementation of the color-coding algorithm [Alon
et al. 2008] originally developed for approximating the count of treelike patterns (a.k.a. treelet)
in protein-protein interaction networks. SAHAD follows a hierarchical sub-template explore-join
approach. Its application was presented only on small graphs with up to ∼300 million edges. FAS-
CIA [Slota and Madduri 2014] is also a color-coding-based solution for approximate treelet count-
ing, whose MPI-based implementation offers superior performance to SAHAD. Chakaravarthy
et al. [2016] extended the color-coding algorithm to count patterns with cycles (although does not
support arbitrary patterns) and presented an MPI-based distributed implementation. However, the
authors demonstrated performance on graphs with only a few million edges.

ASAP [Iyer et al. 2018] is a distributed solution enabling approximate match counting within
a given error bound. ASAP is based on Apache Spark and GraphX [Gonzalez et al. 2014]. Like
Arabesque, ASAP provides a high-level API for implementing graph mining algorithms. ASAP im-
plements a neighborhood sampling technique that estimates the template match count by sampling
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Table 2. Symbolic Notation Used

Object(s) Notation
template graph, vertices, edges G0 (V0,E0)
template graph sizes n0 := |V0 |,m0 := |E0 |
vertices in the template graph V0 := {q0,q1, . . . ,qn0−1}
edges in the template graph (qi ,qj ) ∈ E0

set of vertices adjacent to qi in G0 adj (qi )
background graph, vertices, edges G (V,E)
background graph sizes n := |V |,m := |E |
vertices in the background graph V := {v0,v1, . . . ,vn−1}
edges in the background graph (vi ,vj ) ∈ E
set of vertices adjacent to vi in G adj (vi )
maximum vertex degree in G dmax

average vertex degree in G davд

standard deviation of vertex degree in G dstdev

label set L = {0, 1, . . . ,n� − 1}
vertex label of qi �(qi ) ∈ L
vertex match function ω (vi ) ⊂ V0

set of non-local constraints for G0 K0

matching subgraph, vertices, edges H (VH ,EH )
solution subgraph, vertices, edges G∗ (V∗,E∗)

the edges in the background graph. Unlike our system, the output produced by ASAP is only prob-
abilistic; ASAP does not offer precision and recall guarantees, although it allows tradeoff between
the result accuracy and time-to-solution and provides a technique to bound the counting error.

Gao et al. [2014] introduces an approximate matching technique based on tree-search and join
and evaluate it on large queries (up to 50 vertices). Here, a query template is converted in to a
single-sink directed acyclic graph and message transition follows its topology. Distributed approx-
imate matching solutions based on graph simulation [Henzinger et al. 1995] are proposed in Fard
et al. [2013] and Ma et al. [2012], although both are evaluated only on relatively small real-world
graphs.

3 PRELIMINARIES

We aim to identify all structures within a large background graph, G, identical to a small con-
nected template graph, G0. We describe general graph properties for G, and use the same notation
(summarized in Table 2) for other graph objects.

A graph G (V,E) is a collection of n verticesV = {0, 1, . . . ,n − 1} andm edges (i, j ) ∈ E, where
i, j ∈ V (i is the edge’s source and j is the target). Here, we only discuss simple (i.e., no self-edges),
undirected, vertex-labeled graphs, although the techniques are applicable to directed, non-simple
graphs, with labels on both edges and vertices. An undirected G satisfies (i, j ) ∈ E if and only if
(j, i ) ∈ E. Vertex i’s adjacency list, adj (i ), is the set of all j such that (i, j ) ∈ E. A vertex-labeled

graph also has a set of n� labels L of which each vertex i ∈ V has an assignment �(i ) ∈ L.
A walk in G is an ordered subsequence of V where each consecutive pair is an edge in E. A

walk with no repeated vertices is a path. A path with equal first and last vertex is a cycle. An acyclic

graph has no cycles.
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We further characterize graphs with with cycles. Two disjoint cycles have no edge in common.
Two distinct cycles have at least one edge not in common. We define the cycle degree of edge
(i, j ) ∈ E as the number of distinct cycles (i, j ) is in, written δ (i, j ) . The maximum cycle degree is
δmax := maxE δ (i, j ) . A graph is edge-monocyclic if δmax = 1.

We discuss several graph objects simultaneously: the template graph G0 (V0,E0), the background

graph G (V,E), and the current solution subgraph G∗ (V∗,E∗), with V∗ ⊂ V and E∗ ⊂ E. Our
techniques iteratively refine V∗ and E∗ until they converge to the union of all subgraphs of G
that exactly match the template, G0.

For clarity, when referring to vertices and edges from the template graph, G0, we will use the
notation qi ∈ V0 and (qi ,qj ) ∈ E0. Conversely, we will use vi ∈ V and (vi ,vj ) ∈ E for vertices
and edges from the background graph G or the solution subgraph G∗. In the rest of the article,
particularly in Section 5, Algorithms 3, 4, 5, 6, and 7, we use subscripts (i , j, and k) to differentiate
between distinct vertices of the background graph G and that of the template graph G0. (For ex-
ample, in Algorithm 3, a vertexvj ’s state may be updated if it has received a message from another
vertex vi , where (vi ,vj ) ∈ E. To avoid confusion, we use a different subscript to represent a tem-
plate vertex, e.g., qk . When it is clear from context, we adapt notation to avoid double subscripts,
using q0 or v5 in place of qi0 or vi5 .

We assume G0 is connected, because if G0 has multiple components, then the matching problem
can be easily reduced to solving it for each component individually.

Definition 1. A subgraphH (VH ,EH ),VH ⊂ V,EH ⊂ E is an exact match of template graph
G0 (V0,E0) (in notation,H ∼ G0) if there exists a bijective function ϕ : V0 ←→VH with the prop-
erties (note that ϕ may not be unique for a givenH ):

(i) �(ϕ (q)) = �(q), for all q ∈ V0 and
(ii) ∀(q1,q2) ∈ E0, we have (ϕ (q1),ϕ (q2)) ∈ EH

(iii) ∀(v1,v2) ∈ EH , we have (ϕ−1 (v1),ϕ−1 (v2)) ∈ E0.

Intuition for Our Solution. The algorithms we develop here, iteratively refine a vertex match

functionω (v ) ⊂ V0 such that, for everyv ∈ V ,ω (v ) stores a superset of all template verticesv can
possibly match. Set ω (v ) converges to contain all possible values of ϕ−1 (v ), wherev is involved in
one or more matching subgraphs. When a single constraint involving q ∈ V0 is violated/unmet, q
is no longer a possibility for v in a match and q is removed: ω (v ) ← ω (v ) \ {q}.

Remark 1. Given an ordered sequence of alln0 vertices {q1,q2, . . . ,qn0 } ⊂ V0, a simple (although
potentially expensive) search fromv1 ∈ V∗ verifies ifv1 is in a match, with ϕ (q1) = v1, or not. The
search lists an ordered sequence {v1,v2, . . . ,vn0 } ⊂ V∗, with ϕ defined as ϕ (qk ) = vk . Search step
k proposes a newvk , checking Def. 1 (i) and (ii). If all checks are passed, then the search acceptsvk

and moves on to step (k + 1), but terminates if no such vk exists inV∗. If the full list is generated
with all label and edge checks passed, then there exists aH ∼ G withVH = {v1,v2, . . . ,vn0 }.

We call this Template-Driven Search (TDS), presented in the next section and develop an efficient
distributed version in Section 5, to apply to the solution G∗ (V∗,E∗). If TDS has been applied
successfully, then there are no false positives remaining independently of the structure of G0.
We note that TDS is needed only for the general case, and multiple other specific cases simpler
verification routines can be used.

4 PATTERN MATCHING VIA CONSTRAINT CHECKING: SOLUTION OVERVIEW

Our goal is to realize a technique that systematically eliminates all the vertices and edges that do
not participate in any exact match H ∼ G0. This approach is motivated by viewing the template
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Fig. 2. Three examples of search templates and background graphs that justify the full set (local and non-
local) of pruning constraints. Template (a) is a 3-Cycle; cycles of length 3k with repeated labels in the
background graph meet neighborhood constraints, surviving local constraint checking. Template (b) con-
tains several vertices with non-unique labels; to its right there is a background graph that meets individual
point-to-point path constraints, also surviving (non-local) path checking. Template (c) is characterized by
two 4-Cliques that overlap at a 3-Cycle; the background graph structure to the right is doubly periodic (a
4 × 3 torus) and meets all edge and vertex cycle constraints, surviving (non-local) cycle checking. Templates
(b) and (c) require template-driven search to guarantee no false positives; template (a) only needs cycle
checking in addition to checking the local constraints. (Reused from Reza et al. [2018].)

G0 as specifying a set of constraints the vertices and edges that participate in a match must meet.
As a trivial example, any vertex v whose label �(v ) is not present in G0, cannot be present in an
exact match. A vertex in an exact match also needs to have non-eliminated edges to non-eliminated
vertices labeled as prescribed in the adjacency structure of the corresponding template vertex.

Local constraints that involve a vertex and its immediate neighborhood can be checked by hav-
ing vertices communicate their “provisional” template match(es) with their one-hop neighbors in
the solution subgraph G∗ (V∗,E∗) (i.e., the currently pruned background graph). We call this pro-
cess Local Constraint Checking (LCC) and note that, since communication is limited to one-hop
vertex neighbors, this is a relatively low cost step. For a restricted set of search templates, acyclic
or edge-monocyclic with unique vertex labels, LLC is sufficient for a precise solution [Reza et al.
2017]. For more complex search templates, in our experimental setup, LLC often removes the bulk
of non-matching vertices and edges; although in many cases, most of the search effort is allocated
to verifying the non-local constrains we describe below [Reza et al. 2018].

Templates with topological requirements beyond the immediate neighborhood of a vertex (i.e.,
templates with cycles and/or repeated vertex labels) require additional routines to check non-local
properties to guarantee that all non-matching vertices are eliminated. (Figure 2 illustrates the need
for these additional checks with examples). To support arbitrary templates, we have developed a
process that we dub Non-local Constraint Checking (NLCC): First, based on the search template
G0, we generate the set of constraints K0 that are to be verified and then prune the graph using
each of them.

4.1 Overview of the Constraint Checking Technique

Algorithm 1 presents an overview of our solution. This section provides high-level descriptions
of the local and non-local constraint checking routines while Section 5 provides the detailed dis-
tributed asynchronous algorithms for a vertex-centric abstraction. As an overview, Figure 3 illus-
trates the complete workflow for the graph and pattern in Figure 1, for which constraint generation
is detailed in Table 3.

Local Constraint Checking involves a vertex and its immediate neighborhood. The algorithm
performs the following two operations: (i) Vertex elimination—the algorithm excludes the vertices
that do not have a corresponding label in the template then, iteratively, excludes the vertices that
do not have neighbors as labeled in the template. For templates that have vertices with multiple
neighbors with the same label, the algorithm verifies if a matching vertex in the background graph
has a minimum number of distinct active neighbors with the same label as prescribed in the tem-
plate. (ii) Edge elimination—this excludes edges to eliminated neighbors and edges to neighbors
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Fig. 3. Algorithm walk through for the example background graph and template in Figure 1, depicting which
vertices and edges in G∗ (V∗,E∗) are eliminated (in solid grey) during each iteration. The non-local con-
straints for G0 are listed in Table 3. The example does not show application of some of the constraints as
that do not eliminate vertices or edges. (Reused from Reza et al. [2018].)

ALGORITHM 1: Main Constraint Checking Loop

1: Input: background graph G (V, E), template G0 (V0, E0)
2: Output: solution subgraph G∗ (V∗, E∗)
3: K0 ← NON_LOCAL_CONSTRAINTS (G0)

4: INIT_VERTEX_STATE (G, G0)

5: G∗ ← LOCAL_CONSTRAINT_CHECKING (G, G0)

6: while K0 is not empty do

7: pick and remove the next constraint C0 from K0

8: G∗ ← NON_LOCAL_CONSTRAINT_CHECKING (G∗, G0, C0)

9: if any vertex has been eliminated or has one of its provisional matches removed then

10: G∗ ← LOCAL_CONSTRAINT_CHECKING (G∗, G0)

11: return G∗

whose labels do not match the labels prescribed in the adjacency structure of its corresponding
template vertex (e.g., Figure 3, Iteration #1). Edge elimination is crucial for scalability, since, in a
distributed setting, no messages are sent over eliminated edges thus significantly improving the
overall efficiency of the system (evaluated in Section 7).

Non-local Constraint Checking aims to exclude vertices that fail to meet topological and
label constraints beyond the one-hop neighborhood, that LCC is not guaranteed to eliminate (an
example is presented Figure 2). We have identified three types of non-local constraints that can
be verified independently: (i) cycle constraints (CC), (ii) path constraints (PC), and (iii) constraints
that require TDS (see Remark 1). For arbitrary templates, TDS constraints based on aggregating
multiple paths/cycles enable further pruning, and insure that pruning yields no false positives.
Compared to CC and PC, checking TDS constraints, however, can be more expensive. To reduce
the overall cost, we first generate single cycle- and path-based constraints, which are usually less
costly to verify, and prune the graph using them before deploying TDS.

High-level Algorithmic Approach. Regardless of the constraint type, NLCC leverages a token pass-

ing approach: tokens are issued by background graph vertices whose corresponding template ver-
tices are identified to have non-local constraints. After a fixed number of steps, we check if a
token has arrived where expected (e.g., back to the originating vertex for checking the existence
of a cycle). If not, then the token issuing vertex does not satisfy the required constraint and is
eliminated. Along the token path, the algorithm verifies that all expected labels are encountered

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 2. Publication date: January 2021.



Scalable Pattern Matching in Metadata Graphs via Constraint Checking 2:13

Table 3. Step-by-step Illustration of Non-local Constraint Generation for the Template in Figure 1
(High-level Pseudocode, Accompanied by Pictorial Depiction)

The figures show the steps to generate the required CC, PC, and higher-order constraints requiring TDS.

Algorithm 2 is the pseudocode for the procedure TDS_CONSTRAINTS(). Definitions of the helper functions

UNIQUE_LABEL_VERTICES(), LEAF_VERTICES(), and FIND_CIRCLES() are rather trivial and, hence, not included.

(Figures adapted from Reza et al. [2018].)

and, where necessary, uses the path information accumulated with the token to verify that differ-
ent/repeated vertex identity constraint expectations are met. Next, we discuss how each type of
non-local constraint is verified.

Cycle Constraints. Higher-order structures within G that survive LCC, but do not contain G0,
are possible if G0 contains a cycle (this happens if G contains one or more unrolled cycles as in
Figure 2, Template (a)). To address this, we directly check for cycles of the correct length.
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Path Constraints. If the templateG0 has two or more vertices with the same label that are three or
more hops away from each other, then structures in G that survive LCC, yet contain no match, are
possible (Figure 2, Template (b)). Thus, for every vertex pair with the same label in G0, we directly
check the existence of a path of the correct length and label sequence for prospective matching
vertices in G∗. Opposite to cycle checking, after a fixed number of steps, a token must be received
by a vertex different from the token initiating vertex but with an identical label.

TDS Constraints. These are partial (for further pruning and performance optimization similar to
path and cycle constraints) or complete (i.e., including all edges of the template) walks on the tem-
plate (required to ensure correctness). The token walks the constraint in the background graph and
verifies that each vertex visited meets its neighborhood constraints (Remark 1). In a distributed
memory setting, this is done by maintaining a history of the walk and checking that previously
visited vertices are revisited as expected. TDS constraints are crucial to guarantee zero false pos-
itives for templates that are non-edge-monocyclic or have repeated labels (Figure 2, Template (b)
and (c)). Next, we describe how these three types of non-local-constraints are generated.

ALGORITHM 2: TDS Constraint Generation
1: procedure tds_constraints(K′0 )

2: i ← 0; j ← 1

3: for all K′0 [i] ∈ K ′0 ; i ← i + 1 do

4: for all K′0 [j] ∈ K ′0 ; j ← j + 1 do

5: if K′0 [i] and K′0 [j] have at least one common vertex then

6: if K′0 [i] and K′0 [j] have at least one common edge or type (K′0 ) = PC then

7: K′0 [i]← K′0 [i] ∪ K ′0 [j] � union of two constraints (i.e., substructures of G0)

8: K′0 ← K
′
0 \ K

′
0 [j]; j ← j − 1

9: if type (K′0 ) = PC then

10: for all C0 ∈ K ′0 do

11: C0 ← SPANNING_TREE(C0)

12: return K′0

4.2 Non-local Constraint Generation

We generate non-local constraints following the heuristic presented in Table 3. The three types of
non-local constraints, namely, cycle constraints, path constraints, and TDS constraints, are gener-
ated incrementally: For an example template, we provide a step-by-step illustration of the non-local
constraint generation. Figure 3 shows a complete example of how pruning progresses using the
generated constraints.

Step 1. Identify all the leaf vertices (i.e., a vertex with only one neighbor) with unique labels.
They are not considered for non-local constraint checking as LCC guarantees pruning if there is
no match.

Step 2. Identify all the vertices with duplicate labels. Path constraints are generated only for
these vertices.

Step 3. If the template has cycles, then individual cycles are identified and a cycle constraint is
generated for each cycle.

Step 4. For all possible combinations of vertex pairs with identical label, we identify all existing
paths greater than or equal to three-hop length. (LCC precisely checks identical label pairs that
are one or two hops from each other). One such path, for each vertex pair, is generated as a path
constraint. Here, two optimization’s are applied to minimize the number of path constraints to
be verified: (i) If there are multiple paths connecting two terminal vertices, then the shortest path
is generated as a path constraint. (ii) If all the edges comprising a path also belong to a cycle
constraint, then that particular path is excluded from the set of path constraints. Verification of
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the cycle constraint will implicitly check for existence of a successful walk of appropriate length
connecting the terminal vertices (of the path of interest).

Step 5. We generate TDS constraints in three steps. First, for templates with multiple cycles
sharing more than one vertex (i.e., the template is non-edge-monocyclic), a TDS cyclic constraint
is generated through the union of previously identified cycle constraints. This results in a higher-
order cyclic structure with a maximal set of edges that cover all the cycles sharing at least one
edge (e.g., Step 5(1)).

Second, for templates with repeated labels, a new TDS constraint is generated through the union
of all previously identified path constraints. This procedure generates higher-order structure that
covers all the template vertices with repeated labels (e.g., Step 5(2)).

The final step generates a TDS constraint as the union of the previously identified two con-
straints (e.g., Step 5(3)). Note that the above is a heuristic, more TDS constraints can be generated
by creating various possible combinations of cycles and paths. Only this third step is mandatory
to eliminate all false positives.

Constraint Optimization. Non-local constraint verification checks for existence of at least one
successful walk of the appropriate length. There are alternatives to how tokens could be passed
around to complete a walk. The non-local constraint generation also focuses on optimizing the
walks for token passing.

Whenever possible, we orchestrate each walk so the vertices are visited in the increasing or-
der of label frequency in the background graph. (This procedure has negligible overhead as label
frequency is computed only once per label set and we only sort the vertex list of a template that,
typically, has 101–102 elements). Here, the goal is to curb combinatorial growth of the algorithm
state (or more specifically, in the distributed memory setting, the number of messages). This opti-
mization has the potential of eliminating a large part of the graph without explorations deep into
an excessive number of branches in the backgorund graph.

Non-local constraint generation also focuses of reducing the number of constraints and length
of a walk (as the size of a constraint directly influences complexity). In addition to selecting the
shortest path, if all the edges in a path constraint are also present in a cycle constraint, the path
is ignored. When generating TDS constraints through union of the original path constrains, we
are able to remove some (redundant) edges by obtaining a spanning tree for each TDS constraint
(Algorithm 2, line #11).

Constraint Ordering Heuristics. We use a second set of heuristics to optimize the order in which
constraints are scheduled for verification. First, we check for path and cycle constraints, since they
tend to be less expensive than TDS constraints. Second, we order the non-local constraints with
respect to increasing length of the walk as longer walks are more susceptible to combinatorial
explosion. Tripoul et al. [2018] presents an avenue to design advanced heuristics.

Token Generation. For cyclic constraints, a token must be initiated from each vertex that may
participate in the substructure, whereas for path constraints, tokens are only initiated from termi-
nal vertices. Tokens are started from vertices (that belong to the same cyclic substructure) in the
increasing order of their label frequency in the background graph. For duplicate/distinct label ver-
ification, there is also TDS path constraint checking. The substructure in question may contain a
cycle or a tree. Similarly to path constraints, here tokens are initiated from vertices with duplicate
labels.

5 DISTRIBUTED SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present the constraint checking algorithms in the vertex-centric abstraction
of HavoqGT [HavoqGT 2016], an MPI-based framework that supports asynchronous graph
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ALGORITHM 3: Vertex State and Initialization
1: vertex state: α (vj ) ← f alse � indicates if a vertex vj is active (true ) or eliminated (f alse )

2: vertex state: ω (vj ) ← ∅ � list of possible vertex matches in template

3: vertex state: ε (vj ) � map of active edges of a vertex vj

4: vertex state: τ (vj ) ← ∅ � set of already forwarded tokens by vertex vj , used for work aggregation in NLCC

(Algorithm 4)

5: procedure init_vertex_state(G, G0)

6: for all vj ∈ V do

7: for all qk ∈ V0 do

8: if �(qk ) = �(vj ) then

9: if α (vj ) = f alse then

10: α (vj ) ← true

11: ω (vj ).add (qk )

12: if α (vj ) = true then

13: for all vi ∈ ad j (vj ) do

14: ε (vj ).inser t (vi , ∅)
15: else

16: ε (vj ) ← ∅ � eliminate edges of an inactive vertex

algorithms in the distributed environment. Our choice for HavoqGT is driven by multiple consid-
erations: First, unlike most graph processing frameworks that primarily support the BSP model,
HavoqGT has been designed to support asynchronous algorithms, which is essential to achieve
high-performance. Asynchronous algorithms can exploit the low latency (∼1 μs) interconnect
on leadership-class HPC platforms. Second, the framework has demonstrated excellent scaling
properties for a number of graph traversal problems [Pearce et al. 2013, 2014]. Finally, it enables
load balancing: HavoqGT’s delegate partitioned graph distributes the edges of each high-degree
vertex across multiple compute nodes, which is crucial for achieving scalability for scale-free
graphs with skewed degree distribution.

In HavoqGT, graph algorithms are implemented as vertex-callbacks: the user-defined visit ()
callback can only access and update the state of a vertex. The framework offers the ability to gen-
erate events (a.k.a. visitors in HavoqGT’s vocabulary) that trigger this callback—either at the entire
graph level using the do_traversal () method or for a neighboring vertex using the push(visitor )
call. When a vertex wants to pass data to a neighbor, invoking push(visitor ) enqueues the rele-
vant visitor to the distributed message queue, which exploits MPI asynchronous communication
primitives for exchanging messages. This enables asynchronous vertex-to-vertex communication.
The asynchronous graph computation completes when all events have been processed, which is
determined by a distributed quiescence detection algorithm [Wellman and Walsh 2000].

Algorithm 1 outlines the key steps of the graph pruning procedure. Below, we describe the
distributed implementation of the local and non-local constraint checking, and match enumeration
routines. Algorithm 3 lists the state maintained by each active vertex and its initialization.

5.1 Local Constraint Checking

Local Constraint Checking is implemented as an iterative process (Algorithm 4 and the corre-
sponding callback, Algorithm 5). Each iteration initiates an asynchronous traversal by invoking
thedo_traversal () method and, as a result, each active vertex receives a visitor withmsдtype = init .
In the triggered visit () callback, if the label of a vertex vj in the graph is a match for the label of
any vertex in the template and the vertex is still active, then it creates visitors for all its active
neighbors in ε (vj ) with msдtype = alive (Algorithm 5, line #9). When a vertex vj is visited with
msдtype = alive , it verifies whether the sender vertex vs satisfies one of its own (i.e., vj ’s) local
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ALGORITHM 4: Local Constraint Checking

1: η (vs , vj ) - verifies if vs satisfies a local constraint of vj ; returns ω (vs ) if constraints are met, ∅ otherwise

2: procedure local_constraint_checking(G, G0)

3: do

4: do_tr aversal (msдtype ← init )
5: barrier

6: for all vj ∈ V do

7: ω′ ← ∅ � set of template matches for neighbors of vj

8: for all vi ∈ ε (vj ) do

9: if η (vi , vj ) = ∅ then

10: ε (vj ).r emove (vi ) � edge eliminated

11: continue

12: else

13: ω′ ← ω′ ∪ η (vi , vj ) � accumulate matched neighbor information

14: reset the value field of vi ∈ ε (vj ) for the next iteration

15: for all qk ∈ ω (vj ) do � for each potential match

16: if ad j (qk ) � ω′ then

17: � qk does not meet neighbor requirements

18: ω (vj ).r emove (qk ) � remove from the set of potential matches

19: continue

20: if ε (vj ) = ∅ or ω (vj ) = ∅ then

21: α (vj ) ← f alse � vertex eliminated

22: while vertices or edges are eliminated � global detection

ALGORITHM 5: Local Constraint Checking Visitor

1: visitor state: vj - vertex that is visited

2: visitor state: vs - vertex that originated the visitor

3: visitor state: ω (vs ) - set of possible matches in template for vertex vs

4: visitor state: msдtype - init or alive

5: procedure visit(G, vq) � vq - visitor queue (the distributed message queue)

6: if α (vj ) = f alse then return

7: if msдtype = init then

8: for all vi ∈ ε (vj ) do

9: vis ← LCC_VISITOR(vi , vj , ω (vj ), alive )

10: vq .push (vis )

11: else if msдtype = alive then

12: ε (vj ).дet (vs ) ← ω (vs )

constraints by invoking the function η(vs ,vj ). By the end of an iteration, if vj satisfies all the
template constraints, i.e., it has neighbors with the required labels (and, if needed, a minimum
number of distinct neighbors with the same label as prescribed in the template), it stays active
(i.e., α (vj ) = true) for the next iteration. For templates that have multiple vertices with the same
label, in any iteration, a vertex with that label in the background graph could match any of these
vertices in the template, so each match must be verified independently. If vj fails to satisfy the
required local constraints for a template vertex qk ∈ ω (vj ), then qk is removed from ω (vj ). At any
stage, if ω (vj ) becomes empty, then vj is marked inactive (α (vj ) ← f alse) and never communi-
cate with its neighbors again. Edge elimination excludes two categories of edges: first, the edges
to neighbors, vi ∈ ε (vj ) from which vj did not receive a message of type alive , and, second, the
edges to neighbors whose labels do not match the labels prescribed in the adjacency structure of
the corresponding template vertex/vertices inω (vj ). A vertexvj is also marked inactive if its active
edge list ε (vj ) becomes empty. Iterations continue until no vertex or edge is marked inactive.
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5.2 Non-local Constraint Checking

Non-local Constraint Checking iterates over K0, the set of non-local constraints to be checked,
and validates each C0 ∈ K0 one at a time. Algorithm 6 describes the solution to verify a single
constraint: tokens are initiated through an asynchronous traversal by invoking the do_traversal ()
method and, as a result, each active vertex receives a visitor withmsдtype = init . Each active vertex
vj ∈ G∗ that is a potential match for the template vertex q0 at the head of a walk (i.e., a non-local
constraint) C0, broadcasts a token to all its active neighbors in ε (vj ) with msдtype = f orward . A
map γ is used to track these token issuers. A token is a tuple (t , r ) where t is an ordered list of
vertices that have forwarded the token and r is the hop counter; t0 ∈ t is the token-issuing vertex
in G∗. The ordered list t is essential for TDS, since it enables detection of distinct vertices with the
same label in the token path. For simpler templates, such as templates with unique vertex labels
and only edge-monocycles, t may only contain t0 to keep the message size small.

When an active vertex vj receives a token withmsдtype = f orward , it verifies that if ω (vj ) is a
match for the next entry in C0, if it has received the token from a valid neighbor (with respect to
entries in C0), and that the current hop count is less than |C0 |. If these requirements are satisfied
(i.e., μ (vj ,C0, token) returns true), then vj sets itself as the forwarding vertex (vj is added to t ),
increments the hop count, and broadcasts the token to all its active neighbors in ε (vj ). If any of the
constraints are not met, thenvj drops the token. If the hop count r is equal to |C0 | andvj is the same
as the source vertex in the token, for a cyclic template, then a cycle has been found andvj is marked
true in γ . For path constraints, an acknowledgement is sent to the token issuer to update its status
in γ (Algorithm 7, lines #28–#31). Once verification of a constraint C0 has been completed, the
vertices that are not marked true inγ , are invalidated/eliminated, i.e., α (vj ) ← f alse (Algorithm 6,
line #9).

Our distributed implementation incorporates a number of design features aimed at improving
performance, scalability, robustness and efficiency; we offer a light-weight yet highly effective
technique, called work aggregation, to prevent relaying duplicate messages and the ability to load
balance an intermediate pruned graph. In the remaining of the section, we first discuss these op-
timizations; we then provide details about how vertex metadata (labels) are managed, and various
results our system can output.

ALGORITHM 6: Non-local Constraint Checking

1: procedure non_local_constraint_checking(G, G0, C0)

2: γ ←map of token source vertices (in G) for C0; the value field (initialized to false) is set to true if the token source

vertex meets the requirements of C0

3: do_tr aversal (msдtype ← init )
4: barrier

5: for all vj ∈ γ do

6: if γ .дet (vj ) � true then

7: ω (vj ).r emove (q0) where q0 is the first vertex in C0 � violates C0, eliminate potential match

8: if ω (vj ) = ∅ then � no potential match left

9: α (vj ) ← f alse � vertex eliminated

10: ∀vj ∈ V , reset τ (vj )

5.3 Work Aggregation

All NLCC constraints attempt to identify if a walk exists from a vertex with a fixed label and
through vertices with specific labels. Since the goal is to identify the existence of any such
path and multiple intermediate/complete paths in the background graph often exist, to prevent
combinatorial explosion, our duplicate work detection mechanism prevents an intermediary
vertex (in the token path) from forwarding a duplicate token. NLCC uses an unordered set τ (vj )
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ALGORITHM 7: Non-local Constraint Checking Visitor

1: visitor state: vj - vertex that is visited

2: visitor state: token - the token is a tuple (t, r ) where t is an ordered list of vertices that have forwarded the token

and r is the hop counter; t0 ∈ t is the vertex that originated the token

3: visitor state: msдtype - init , f orward or ack

4: μ (vj , C0, token) - verifies if vj satisfies requirements of C0 for the current state of token; returns true if constraints

are met, f alse otherwise

5: procedure visit(G, vq)

6: if α (vj ) = f alse thenreturn

7: if msдtype = init and ∃qk ∈ ω (vj ) where qk = q0 ∈ C0 then

8: � initiate a token; vj is the token source

9: t .add (vj ); r ← 1; token ← (t, r ); γ .inser t (vj, f alse )
10: for all vi ∈ ε (vj ) do

11: vis ← NLCC_VISITOR(vi , token, f orward )

12: vq .push (vis )

13: else if msдtype = f orward then � vj received a token

14: if token � τ (vj ) then � work aggregation optimization

15: τ (vj ).inser t (token)
16: elsereturn � ignore if vj already forwarded a copy of token

17: if μ (vj , C0, token) = true and token .r < |C0 | then

18: � the walk can be extended with vj and it has not reached the length |C0 | yet

19: token .t .add (vj ); token .r ← token .r + 1;

20: for all vi ∈ ε (vj ) do � forward the token

21: vis ←NLCC_VISITOR(vi , token, f orward )

22: vq .push (vis )

23: else if μ (vj , C0, token) = true and token .r = |C0 | then

24: � the walk has reached the length |C0 |
25: if C0 is cyclic and t0 = vj then

26: γ .дet (vj ) ← true return � vj meets requirements of C0

27: else if C0 is acyclic and t0 � vj then

28: vis ← NLCC_VISITOR(t0, token, ack )

29: vq .push (vis ) � send ack to the token originator, t0 ∈ t

30: else if msдtype = ack then

31: γ .дet (vj ) ← truereturn � vj meets requirements of C0

(Algorithm 3, line #4) for work aggregation (see Algorithm 7, line #14): at each vertex, this is used
to detect if another copy of a token has already visited the vertex vj taking a different path. The
performance impact of this optimization is evaluated in Section 7.5.

5.4 Load Balancing

Load imbalance issues are inherent to problems involving irregular data structures, such as graphs,
especially when these need to be partitioned for processing over multiple nodes. For our pattern
matching solution, load imbalance can be further caused by two artifacts: First, over the course
of execution our solution causes the workload to mutate, i.e., we prune away vertices and edges.
Second, the distribution of matches in the background graph may be nonuniform: the vertices
and edges that participate in matches, may reside on a small, potentially concentrated, part of the
graph. (In Section 7.6, we present a detailed characterization of these artifacts.)

The iterative nature of the constraint checking pipeline allows us to adopt a pseudo-dynamic

load balancing approach: First, we checkpoint the current state of execution (at the end of an
asynchronous constraint checking phase): the pruned graph, i.e., the set of active vertices and edges
and the per-vertex state indicating template matches,ω (vj ) (Algorithm 3). Next, using HavoqGT’s
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distributed graph partitioning module, we reshuffle the vertex-to-processor assignment to evenly
distribute vertices (with ω (vj ) remained intact) and edges across processing cores. Processing is
then resumed on the rebalanced workload. Furthermore, depending on the size the the pruned
graph, it is possible to resume processing on a smaller deployment (primarily for efficiency reasons,
such as conserving CPU Hours). Over the course of the execution, checkpointing and rebalancing
can be repeated as needed. We evaluate the effectiveness of different load balancing strategies and
present an analysis of their impact on performance in Section 7.6.

5.5 Termination and Output

If NLCC is not required, then the search terminates when no vertex is eliminated (or none of its
provisional matches is removed) in an LCC iteration. Otherwise, the search terminates when all
constraints in K0 have been verified. The output of constraint checking is (i) the set of vertices
and edges that survived the iterative elimination process and, (ii) for each vertex in this set, the
mapping in the template where a match has been identified.

A distributed match enumeration or counting routine can operate on the pruned solution sub-
graph: Algorithm 7 can be slightly modified to obtain the enumeration of the matches in the back-
ground graph; here, the constraint used is a walk on the full template, work aggregation is turned
off, and each possible match is verified. For each of the vertices that remains in the solution set, the
pruning procedure collects their exact match(es) to the search template. We use this information
to accelerate match enumeration.

5.6 Metadata Store

The metadata are stored independent of the graph topology itself that uses the Compressed Sparse
Row (CSR) format [Bell and Garland 2009]. At initialization, only the required attributes are read
from the file(s) stored on a distributed file system. A light-weight distributed process builds the
in-memory (or memory-mapped) metadata store. For example, on 256 compute nodes, for the 257
billion edge Web Data Commons graph [Robert Meusel 2016], the metadata store can be populated
in under a minute. Although, in this work, we consider vertex metadata (i.e., labels) only, support
for edge metadata is trivial within the presented infrastructure.

6 COMPLEXITY ANALYSIS

We attempt to estimate the space, time and generated message complexity for both LCC and NLCC
routines presented in Section 5. Note that except for the first iteration of LCC, constraint checking
routines are invoked on the current (pruned) solution subgraph G∗ (V∗,E∗), where |G∗ | ≤ |G|.
(See Table 2 for the symbolic notation used in this section.)

6.1 Local Constraint Checking

We mainly focus on analyzing the complexity of one iteration of the LCC routine presented in
Algorithm 4.

Space Complexity. In each iteration of LCC, each active vertex vi ∈ V∗ maintains a set of its
template vertex matches/exclusions ω (vi ), where |ω (vi ) | = |V0 |. Therefore, space complexity of
LCC is linear in the size of the template:O ( |V∗| × |V0 |). In our implementation, we use a bit vector
to store the template vertex matches to reduce memory overhead. For example, if the template has
64 vertices, then per-vertex (ofG∗) storage requirement is eight bytes. Additionally, in one iteration
of LCC, an active vertex creates one visitor per active edge, therefore, the storage requirement for
the visitor queue (the message queue in HavoqGT) is O ( |E∗ |).
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Time Complexity. In each iteration of LCC, all active vertices in V∗ visit all their respective
active neighbors (in E∗). In iteration k , only the vertices and edges that survived iteration k − 1,
are considered. Therefore, the time complexity of the kth iteration is O ( |V∗

k−1
| + |E∗

k−1
|). Initially,

i.e., when k = 0 and no vertices and edges have been eliminated, i.e., V∗ = V and E∗ = E; we
can write time complexity of the first iteration is O ( |V∗| + |E∗ |), the most expensive of all LCC
iterations. Assume LCC stops eliminating vertices and edges afterkmax iterations; hence, total time
complexity of LCC isO (kmax × ( |V∗| + |E∗ |)). For an acyclic template with unique labels, kmax =

diam (G0) + 1 (see Reza et al. [2017] for proof). An analysis for the worst case for an arbitrary
template does not take us far—the upper bound of maximum number of iteration in LCC is kmax ≤
|E|. In practice, the worst case is when in each iteration only a few or no vertices and/or edges are
eliminated and a large number of iterations is needed. However, for real-world, scale-free graphs,
the first few steps of LCC reduce |G| by several orders of magnitude, yielding costs nowhere near
the worst-case bounds (see the evaluation section (Section 7) for multiple examples).

Message Complexity. In each iteration, an active vertex creates one visitor per active edge,
resulting in one message per edge. The analysis is similar to the one above: the message complexity
of one iteration of LCC is O ( |E∗ |).

6.2 Non-local Constraint Checking

We study the complexity of the NLCC routine for checking a single constraint C0 ∈ K0, presented
in Algorithm 6. Note that for a cyclic constraint, a token must be initiated from each vertex in the
background graph that may participate in the substructure representing C0, i.e., in Algorithm 6,
each vertex in G∗, that match at least one vertex in C0, initiates a token.

Space Complexity. The NLCC routine requires two additional algorithm states: (i) γ , the map
of token source vertices (in G∗) for C0, requires at most O ( |V∗|) storage, and (ii) τ (vj ), the set of
already forwarded tokens by a vertex vj used for work aggregation: If C0 is edge-monocyclic and
has unique vertex labels, then the per-vertex storage requirement for τ (vj ) is no more thanO ( |γ |)
or total O ( |V∗| × |γ |) for G∗. For arbitrary templates, however, the cost is superpolynomial and
proportional to the message complexity discussed later. Similarly, the worst-case storage require-
ment for the visitor queue is also superpolynomial (and directly related to the generated message
traffic).

Time Complexity. In NLCC, each constraint C0 ∈ K0 is verified by passing around tokens. Each
active vertex inV∗ ∈ G∗ that could be a template match for the first vertex in C0, issues a token—
identified by an entry in γ where |γ | ≤ |V∗|. In the distributed message passing setting, token
passing happens in a breadth-first search manner (on shared memory, a more work-efficient depth-
first search like implementation is possible). The effort related to token propagation is bounded
by |γ |—the number of tokens, average degree connectivity, and the depth of the propagation (i.e.,
the size of the constraint |C0 |). For an arbitrary constraint C0, the cost is exponential: Assume r
indicates a step in the walk represented by C0; at r = 1, in the worst case, a token is received by
at most ( |V∗| − 1) vertices, and at r = 2, each of these vertices forward the same token to at most
( |V∗| − 2) vertices. To propagate |γ | token, this results in visiting |γ | × ( |V∗| − 1) × ( |V∗| − 2) ×
· · · × ( |V∗| − r − 1) vertices, where r = |C0 |). Since |γ | ≤ |V∗|, we can write the sequential cost of
verifying constraint C0 is O ( |V∗| |C0 | ).

Message Complexity. As discussed above, in NLCC, each vertex visitation by (a copy of) a
token results in one message. Therefore, the message complexity of checking a non-local constraint
C0 is O ( |V∗| |C0 | ). Heuristics like work aggregation, however, prevents a vertex from forwarding
duplicate copies of a token, which reduces the time and message propagation effort in practice.
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6.3 Motivating the Expected Gains from the Complexity Perspective

The previous section presents the time, space, and message complexity of the local and non-local
constraint checking algorithms. Here, we attempt to give an intuition for the expected perfor-
mance gains compared to the traditional direct enumeration approach [Ullmann 1976]. Direct
enumeration has O ( |V | |G0 | ) complexity in the general case [Ullmann 1976]. In our approach, the
non-local constraint checking routines are the high-complexity routines: O ( |V∗| |C0 | ). These rou-
tines operate on the current solution subgraph graph G∗ (V∗,E∗) after it has already been pruned
by local constraint , and is generally expected to be significantly smaller than the original back-
ground graph, i.e., |V∗| ≤ |V | (we explore this in Reza et al. [2018]; note that we eliminate both
vertices and edges). Also, |C0 | ≤ |G0 | and, as we check constraints in the increasing order of their
length, constraints (substructures of the search template) that require a longer walk, operate on
the smaller pruned graph available in the later stages of processing. Finally, compared to direct
enumeration, our constraint checking-based approach typically generates smaller algorithm state,
thus limiting combinatorial explosion; and, at the same time, the work aggregation heuristic pre-
vents a vertex from forwarding duplicate copies of a token, which reduces the generated network
traffic (see Section 7.5). In the same vein, in our approach, match enumeration is performed on the
pruned solution subgraph, hence, the complexity is O ( |V∗| |G0 | ).

7 EVALUATION

This section is structured as follows: To demonstrate the ability of our system to process massive
graphs on large deployments, we present strong scaling experiments on the largest real-world
graph publicly available (Section 7.4). We evaluate the effectiveness of key design decisions,
optimizations, and load balancing techniques our system incorporates (Sections 7.5 and 7.6).
We demonstrate the versatility of our constraint checking approach and use it as a stepping
stone to efficiently support additional usage scenarios, namely, interactive incremental search

and exploratory search (Section 7.7). We compare our solution with three state-of-the-art exact
pattern matching systems, Arabesque [Teixeira et al. 2015], QFrag [Serafini et al. 2017], and TriAD
[Gurajada et al. 2014] (Section 7.8). Furthermore, we study how search template characteristics
impact search performance and (Section 7.9) and demonstrate application to graphs with various
vertex degree distributions (Section 7.10).

Our previous work [Reza et al. 2018], includes additional experimental results: weak scaling

experiments on massive synthetic R-MAT graphs with up to ∼4.4 trillion edges and using up to
1,024 compute nodes (36,864 cores) (Reza et al. [2018], Section 5A); demonstrates the ability to
support full match enumeration, starting from the pruned solution subgraph (Reza et al. [2018],
Section 5A) on these massive datasets; evaluation of various design decisions (Reza et al. [2018],
Section 5F); shows support for realistic data analytics scenarios using two real-world graphs, Reddit

and IMDb (Reza et al. [2018], Section 5D); and an exploration of time-to-solution vs. precision
guarantees tradeoffs (Reza et al. [2018], Section 5E). Finally, Tripoul et al. [2018] explores advanced
heuristics for constraint selection and ordering; and Reza et al. [2017] focuses on a restricted set
of search templates, acyclic or edge-monocyclic without duplicate labels, that can be supported
extremely efficiently.

7.1 Testbed

The testbed is the 2.6-petaflop Quartz cluster at the Lawrence Livermore National Laboratory,
composed of 2,634 nodes and the Intel Omni-Path interconnect. Each node has two 18-core Intel
Xeon E5-2695v4 @2.10 GHz processors and 128 GB of main memory [Quartz 2017]. We run one
MPI process per core (i.e., 36 processes per node).
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Table 4. Properties of the Datasets Used for Evaluation: Number of Vertices and Edges, Maximum,
Average and Standard Deviation of Vertex Degree, and the Graph Dataset Size, in the Compact

CSR-like Representation Used, which Includes the Vertex Metadata

Type |V | 2|E | dmax davд dstdev Size

Web Data Commons [Robert Meusel 2016] Real 3.5B 257B 95M 72.3 3.6K 2.7 TB

Reddit [Reddit 2017] Real 3.9B 14B 19M 3.7 483.3 460 GB

Internet Movie Database [IMDb 2016] Real 5M 29M 552K 5.8 342.6 581 MB

CiteSeer [Teixeira et al. 2015] Real 3.3K 9.4K 99 3.6 3.4 741 KB

Mico [Teixeira et al. 2015] Real 100K 2.2M 1.4K 22 37.1 36 MB

Patent [Serafini et al. 2017] Real 2.7M 28M 789 10.2 10.8 480 MB

YouTube [Serafini et al. 2017] Real 4.6M 88M 2.5K 19.2 21.7 1.4 GB

LiveJournal [Backstrom et al. 2006] Real 4.8M 69M 20K 17 36 1.2 GB

Twitter [Kwak et al. 2010] Real 41.7M 2.9B 3M 47.7 2.1K 47 GB

UK Web [Boldi et al. 2011; Boldi and Vigna 2004] Real 105.9M 7.5B 975K 70.6 718 119 GB

Road USA [Rossi and Ahmed 2015] Real 23.9M 58M 9 2.4 0.9 1.4 GB

R-MAT up to Scale 37 [Chakrabarti et al. 2004] Synthetic 137B 4.4T 612M 32 4.9K 45 TB

7.2 Datasets

Table 4 summarizes the main characteristics of the datasets used in this work. We briefly explain
below how the background graphs and their labels are created. Additional details can be found
in Reza et al. [2018] and Tripoul et al. [2018]. For all graphs, we created undirected versions - two
directed edges are used to represent each undirected edge.

The Web Data Commons (WDC) graph is a webgraph whose vertices are webpages and edges
are hyperlinks. To create vertex labels, we extract the top-level domain names from the webpage
URLs, e.g., .org or .edu. If the URL contains a common second-level domain name, then it is chosen
over the top-level domain name. For example, from ox.ac.uk, we select .ac as the vertex label. A
total of 2,903 unique labels are distributed among the 3.5B vertices in the background graph.

We curated the Reddit (RDT) social media graph from an open archive [Reddit 2017] of billions of
public posts and comments from Reddit.com. Reddit allows its users to rate (upvote or downvote)
others’ posts and comments. The graph has four types of vertices: Author, Post, Comment, and
Subreddit (a category for posts). For Post- and Comment-type vertices there are three possible labels:
Positive, Negative, and Neutral (indicating the overall balance of positive and negative votes) or No

rating. An edge is possible between an Author and a Post, an Author and a Comment, a Subreddit and
a Post, a Post and a Comment (to that Post), and between two Comments that have a parent–child
relation.

We use the smaller Patent and YouTube graphs for comparison with existing exact pattern match-
ing systems, QFrag [Serafini et al. 2017] and TriAD [Gurajada et al. 2014]. The Patent graph has
37 unique vertex labels, while the YouTube graph has 108 unique vertex labels. We use CiteSeer,
Mico, Patent, YouTube, and LiveJournal unlabeled, real-world graphs for performance comparison
with Arabesque [Teixeira et al. 2015]. Additionally, we use two large (billions of edges) real-world,
scale-free graphs, Twitter and UK Web, used in the past by many for studying various graph anal-
ysis problems; and a large diameter, real-world, road network graph, Road USA.

The synthetic Recursive MATrix (R-MAT) graphs exhibit approximate power-law degree distri-
bution [Chakrabarti et al. 2004]. These graphs were created following the Graph 500 [Graph 500
2016] standards: 2Scale vertices and a directed edge factor of 16. For example, a Scale 30 graph has
|V | = 230 and |E | ≈ 32 × 230 (as we create an undirected version). Since we use the R-MAT graphs
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Fig. 4. WDC patterns using top/second-level domain names as labels. The labels selected are among the
most frequent, covering ∼81% of the vertices in the WDC graph: Unsurprisingly, com is the most frequent
(covering over two billion vertices), org covers ∼220M vertices; the second most frequent after com and mil

is the least frequent among these labels, covering ∼153K vertices.

for weak scaling experiments, we aim to generate labels such that the graph structure changes lit-
tle as the graph scales. To this end, we leverage vertex degree information to create vertex labels,
computed using the formula, �(vi ) = �log2 (d (vi ) + 1)�. This, for instance for the Scale 37 graph,
results in 30 unique vertex labels.

Notes on Data Storage and Loading. Our testbed is served by a distributed storage platform
running the Lustre parallel file system [Lustre 2016]. To accelerate graph loading, HavoqGT can
preprocess the adjacency lists to take advantage of the existing parallel file system: It splits each
input dataset in the same number of parts/files as the MPI processes used in the respective ex-
periment. HavoqGT’s graph partitioning process also attempts to create balanced partitions by
assigning an equal share of edges to each partition and, where necessary, splits the edge set of
a high-degree vertex over multiple partitions. This however, can be a costly process for massive
graphs: for example, for the WDC graph, graph partitioning for 128 nodes (4,608 partitions) takes
about six hours. This distributed graph can then be loaded from the parallel file system in under two
minutes. The vertex metadata, is stored (split in multiple parts/files) independently of the graph
topology and can be loaded from the distributed file system relatively fast without preprocessing:
for example, for the WDC graph, in about 30 s.

7.3 Search Templates and Experiment Design

To stress our system, we use templates based on patterns naturally occurring, and relatively fre-
quent, in the background graphs. The WDC (Figure 4), Twitter, UK Web, Patent, YouTube and R-MAT

patterns include vertex labels that are among the most frequent in the respective graphs. The Red-

dit and IMDb patterns include most of the vertex labels in these two graphs [Reza et al. 2018].
We chose templates to exercise different constraint checking scenarios: the search templates have
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Fig. 5. Runtime for strong scaling experiments, broken down into individual (LCC and NLCC) phases, for
four of the patterns in Figure 4. (For better visibility, for WDC-1, runtime for different iterations are split into
two scales on the Y axis.) The last two rows are the number of vertices and edges in the pruned solution
subgraph, respectively. Speedup over the 64 node configuration is also shown on top of each stacked bar
plot. (Partially reused from Reza et al. [2018] with additional results.)

multiple vertices with the same label and non-edge-monocyclic properties (they require relatively
expensive non-local constraint checking).

All runtime numbers provided are averages over 10 runs. Unless mentioned explicitly, the per-
formance metric is the time to produce the solution subgraph for a single template.

7.4 Strong Scaling Experiments

The strong scaling experiments evaluate the performance of pruning (i.e., we verify all the con-
straints required to guarantee zero false positives). The smallest experiment uses 64 nodes, as this
is the lowest number of nodes that can load the graph topology and vertex metadata in memory.
Figure 5 shows runtimes for strong scaling experiments when using the real-world WDC graph on
up to 1,024 nodes (36,864 cores). Intuitively, pattern matching on the WDC graph is harder than
on the R-MAT graph as the WDC graph is denser, has a highly skewed degree distribution, and the
high-frequency labels used also belong to vertices with high neighbor degree.

We use the patterns presented in Figure 4. WDC-1 is acyclic, yet has multiple vertices with the
same label and thus requires non-local constraint checking (PC and TDS). For better visibility,
the plot splits checking initial LCC and NLCC-path constraints (bottom left) from NLCC-TDS
constraints (top left). We notice near perfect scaling for the LCC phases, however, some of the
NLCC phases do not show linear scaling (explained in Section 7.6).

WDC-2 is an example of a pattern with multiple cycles sharing edges, and relies on CC and TDS
constraint checking. WDC-2 shows near-linear scaling with ∼1/3 of the total time spent in the first
LCC phase and little time spent in the NLCC phases. WDC-3 is a monocyclic template and, when
edge elimination is used (bottom right), shows steady scaling for both LCC and NLCC phases.

The WDC-5 pattern includes the top three most frequent labels, namely, com, org, and net, and
covers∼72% vertices in the WDC graph. Similar to WDC-1, a majority of the time is spent verifying
the non-local constraints. The NLCC phases do not scale well with increasing node count for two
interrelated reasons: first, vertices participating in matches have high neighbor degree, and second,
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Fig. 6. (a) Performance and scalability comparison between the vertex elimination only (left), and combined
vertex and edge elimination (right), for the WDC-3 pattern. (b) Impact of work aggregation on runtime using
three real-world graphs: WDC-1 and WDC-3 patterns (for the sake of readability, only a subset of non-local
constraints are considered for WDC-1), and the Q8 pattern (Figure 12) using the Twitter and UK Web graphs.
(Partially reused from Reza et al. [2018] with additional results.)

and more importantly, heavily skewed template match distribution among the graph partitions,
(further explored in Section 7.6).

7.5 Impact of Major Design Decisions and Optimizations

Here, we present the impact of two major design decisions and optimizations: (i) edge elimination
and (ii) work aggregation. (In Reza et al. [2018] and Tripoul et al. [2018], we have studied the
impact of additional design features on search performance.)

Edge Elimination. Figure 6(a) highlights the important scalability and performance impact of
edge elimination: Without it, the NLCC phases take almost one order of magnitude longer and
the entire pruning takes 2–9× longer. Without edge elimination, the WDC-3 pattern results in
3,180,678 edges selected (it includes false positives). Edge elimination identifies the true-positive
matches and reduces the number of active edges to 255,022. In other words, the solution subgraph is
12.5× sparser that in turn improves overall message efficiency of the system. We note that this one
order of magnitude reduction enables match enumeration and advanced analytics on the solution
subgraph.

Work Aggregation. Figure 6(b) shows the performance gains enabled by the work aggregation
strategy employed by the distributed non-local constraint checking routine (presented in Section 5
and Algorithm 7). We study the impact of work aggregation for three large real-world graphs:
WDC, Twitter, and UK Web. The magnitude of the gain is data dependent and more pronounced
when the pattern is abundant, e.g., 50% improvement for WDC-1 that has 600M+ matches in the
background graph. The experiments using the Twitter and UK Web graphs further highlight the
advantage of work aggregation: We compare the runtime of a single non-local constraint (a TDS
constraint involving all the vertices and edges in the template) for the search pattern Q8 (Figure 12).
(The experiment details are available in Section 7.9.) For the Twitter and UK Web graphs, the gain
in runtime are two and three orders of magnitude, respectively (Figure 6(b), right chart). Unlike
full match enumeration, NLCC does not need to identify all possible walks for each token; the
goal is to identify the existence of any such walk (a complete path) in the background graph -
sufficient to save the vertex that initiated the token from elimination. The significant improvement
in runntime is due to reduction in number of complete paths traversed by all the tokens created; the
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number of messages communicated in non-local constraint checking is proportional to the number
of paths traversed. For the UK Web graph, for 24,000 unique tokens, without work aggregation,
45 billion unique paths are discovered. Our work aggregation technique reduces the number of
complete paths traversed to 71 million, a four orders of magnitude reduction; hence, the three
orders of magnitude gain in runtime (Figure 6(b), right chart). Similarly, for the Twitter graph, the
reduction in the number of complete paths traversed is three orders of magnitude. (In Figure 6(b),
all experiments were run on 64 compute nodes.)

7.6 Load Balancing

For our pattern matching solution, load imbalance can be caused by two artifacts: First, over the
course of execution our solution causes the workload to mutate, as it prunes away vertices and
edges. Second, the distribution of matches in the background graph may be nonuniform: Matches
may reside on a small, potentially concentrated, portion of the graph. This section, first presents
a detailed characterization of these artifacts, then it discusses and evaluates two load balancing
strategies.

Does Load Imbalance Occur? Indeed, load imbalance does occur. For instance, for the rela-
tively rare WDC-2 (Figure 4) pattern, when using 64 nodes, for example, the vertices and edges
that participate in the final selection are distributed over as few as 111 partitions out of the 2,304
(64 nodes × 36 MPI processes per node). The distribution is concentrated—more than half of the
matching edges reside on only 20 partitions. For the more frequent WDC-1 pattern, 50% of the
matching edges are on less than 5% of the partitions on a 64 node deployment, and less than 3% of
the partitions on a 128 node deployment.

We observe further nonuniformity in the match distribution at the vertex granularity; the num-
ber of matches a vertex participates in, can significantly vary across the matching vertex setV∗.
As an example, let us consider the WDC-2 pattern (whose matches are shown in Reza et al. [2018],
Figure 10; they form six connected components). The largest connected component contains 2,262
matches (bottom row, center). In this connected component, there is a single gov vertex, which par-
ticipates in 2,262 matches (of a total of 2,444 matches). This artifact is more pronounced in the case
of the WDC-1 and WDC-2 patterns. For WDC-1, 99% of the matching vertices are part of a single
connected component. There are multiple vertices that belong to over three million matches. The
numbers are more striking for the frequent WDC-3 pattern—a single vertex participates in over
34 million matches.

This irregularity has crucial performance implications, in particular, it hinders the scalability
of the routines that rely on multi-hop graph walks, such as non-local constraint checking and
full match enumeration. When the matches are concentrated on a few compute nodes and only
a few vertices participate in a large number of matches, the partitions these vertices reside on
send/receive a larger portion of the message traffic. In this case, increasing the number of proces-
sors does not help as, in our current infrastructure, processing at the vertex granularity can not
be “scaled out” efficiently. Furthermore, since each partition processes the local message queue
sequentially, message traffic targeting popular vertices can overwhelm the respective partitions.
Consequently, these bottlenecked partitions become the key performance limiter. This reasoning
explains why some of the non-local constraint checking phases do not scale well (e.g., Figure 5).

Strategies to Address Load Imbalance Issues. We explore two strategies to address load-
balancing issues: (i) reshuffling the load and (ii) load consolidation, i.e., reloading the shuffled load
on fewer nodes to also optimize for locality and reduce generated network traffic.
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Fig. 7. RMAT-2 is the template used for R-MAT experiments (left); it includes the most frequent vertex la-
bels in the background graph (as in Figure 12). The RDT-1 (Reddit) pattern is used for the load balancing
experiments in Section 7.6 (right, reused from Reza et al. [2018]).

Fig. 8. (a) Impact of load balancing on runtime using differnt number of compute nodes for the the WDC-
1 and RDT-1 patterns. Speedup achieved by LB (load balancing) over NLB (without load balancing) is also
shown on the top of each bar. (b) Performance of RDT-1 for four scenarios: (left) without load balancing on
64 nodes (NLB-64), (center-left) with load balancing on the same number of nodes (LB-64), (center-right)
relaunching on a 16 node deployment after load balancing (LB-16) and (right) relaunching on a single node
(36 processes) after load balancing (LB-1). Time-to-solution and CPU Hours consumed (normalized to the
LB-1 experiment) are numerically presented on the top of the respective bars.

Load Reshuffling. We employ a pseudo-dynamic, load balancing strategy. First, we checkpoint
the current state of execution: the pruned graph, i.e., the set of active vertices and edges and the
per-vertex state indicating template matches, ω (vj ) (Algorithm 3). Next, using HavoqGT’s graph
partitioning module, we reshuffle the vertex-to-processor assignment to evenly distribute vertices
(withω (vj ) remained intact) and edges across processing cores. Processing is then resumed on the
rebalanced workload. Depending on the size the the pruned graph, it is possible to resume pro-
cessing on a smaller deployment (discussed in the next section). Over the course of the execution,
checkpointing and rebalancing can be repeated as needed (the identification of the optimal trigger
point to perform load balancing, however, requires further investigation).

To examine the impact of this technique, we analyze the runs for WDC-1 (Figure 4) and RDT-1
(Figure 7) patterns, as real-world workloads are more likely to lead to imbalance. Figure 8(a)
compares performance with and without load balancing. For these experiments, we perform
rebalancing only once. For WDC-1, before verifying the TDS constraints, and for RDT-1, when
the pruned graph is four orders of magnitude smaller. The extent of load imbalance is more
severe for WDC-1 on the smaller 64 node deployment compared to using 128 nodes—workload
rebalancing improves time-to-solution by 3.1× and 1.3×, on 64 and 128 nodes, respectively. In the
case of RDT-1, load balancing improves time-to-solution by 1.7×. Given the pruned graphs are
much smaller than the original graph; often the time spent in checkpointing, rebalancing, and
relaunching the computation is negligible compared to the gain in time-to-solution.
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Smaller Deployment. One may argue that when the current solution subgraph G∗ is sufficiently
small, it is more efficient to create load balanced partitions targeting a smaller deployment. Two
different aspects of “efficiency” concerns support this approach: First, moving to a smaller de-
ployment reduces power usage and may yield better normalized performance with respect to en-
ergy consumption. Second, for the scenario where the matches are highly concentrated on a lim-
ited number of nodes/partitions (which hinders the scalability of the non-local constraint check-
ing phase), a smaller deployment offers locality (through reduced number of generated network
traffic).

We setup a simple case study using the Reddit dataset and the RDT-1 pattern. We resume process-
ing on the rebalanced workload on a smaller deployment - from the original 64 node deployment,
we switch to a 4× smaller deployment comprised of 16 nodes. In a second use case, we resume pro-
cessing on the rebalanced workload a on a single node (running 36 processes). Figure 8(b) compares
four scenarios: (i) without load balancing (NLB-64), (ii) with load balancing (LB-64), (iii) with load
balancing and relaunching on a smaller 16 node deployment (LB-16), and (iv) relaunching on a sin-
gle node after load balancing (LB-1). In addition to time-to-solution, we also compare CPU Hours
consumed by each of the four cases. (A platform’s net energy consumption can be roughly approx-
imated by the total CPU Hours expended.) Figure 8(b) shows that, with respect to time-to-solution,
LB-64 has marginal advantage over LB-16 and LB-1. However, LB-1 holds significant advantage
in terms CPU Hour consumption: It is 6.1× more efficient than LB-64. The overhead for NLB-64
is 10.4× compared to LB-1. These results support the argument that the load balanced partitions
targeting a smaller deployment yields better normalized performance with respect to CPU Hour
and energy consumption.

7.7 Advanced Usage Scenarios

This section highlights that our approach, based on constraint checking, can be extended to sup-
port a number of advanced pattern matching scenarios.

Interactive Incremental Search. In this scenario, the user starts with an under-constrained
search template (possibly returning too many matches), and the system is setup for interactive
use: the user can add/delete edges, observe the changes in the solution subgraph (or statistic over
it), and continue to interact with the system. The only restriction we place on the user is that (s)he
can remove only edges (not vertices) and has to maintain the search template is connected.

We take advantage of two observations: (i) For template revision through edge addition, adding
an edge is similar to adding a constraint, and the search for the revised template can be limited
within the vertex set of the current solution subgraph presented to the user. (ii) For template re-
vision through edge deletion, we observe that, one can build a solution superset that is the union
of all matches for all possible search templates that may be obtained from the initial template by
removing just edges, using local constraints only, thus at a low cost. We use this restricted solution
superset, which we refer to as the candidate set, to initially prune the backgtound graph, and to
reinitiate the solution subgraph when an edge (from the current search template) is deleted. Fur-
thermore, for the same vertex in the background graph, non-local constraints can be verified only
once and this information can be reused in later searches (i.e., for revised templates); eliminating
a large amount of potentially redundant work. We call this technique work reuse. (Design details
are available in Reza et al. [2020b].)

For a preliminary evaluation of the effectiveness of these techniques we consider the search sce-
nario presented in Figure 9 and explained in detail in Figure 10. We demonstrate the advantage of
the optimized technique over a naiv ̎e approach that uses the exact matching solution to indepen-
dently search the original query and each of its revisions. The experiment scenario, labelled PJI-X,
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Fig. 9. An example showing the queries incrementally searched in the WDC graph. The user begins with the
leftmost pattern (a) and incrementally revises the query by adding edges; gradually moves from left to right.

Fig. 10. Runtime comparison between the naïve and the optimized incremental search solution for the sce-
nario in Figure 9. For each experiment, the stacked bar plot shows the time spent in each query. For the
optimized incremental search solution (labeled PJI), we consider two setups: (i) PJI-X—we build the candi-
date set, directly search the initial query in it, then each of the remaining searches is limited within the
vertex set of the solution subgraph of the previous search; (ii) PJI-Y—in addition to PJI-X, we also employ the
work reuse technique. For PJI, speedup achieved over the naïve approach is shown on top of respective bar
plots. The chart legend also shows the number of vertices that match respective queries. The fraction of the
runtime labeled “S” is the overhead for building the candidate set. (Partially reused from Reza et al. [2020b].)

highlights the advantage building and restricting the searches to the candidate set: the solution
first computes the candidate set, and then each template revisions is searched starting from this
set; this version of the optimized pipeline offers 2.6× speedup. The experiment scenario PJI-Y, in
addition to computing the candidate set at the start of the experiment, also employs the work reuse
technique, to eliminate redundant non-local constraint verification. This yields a further 3.5× gain
in time-to-solution over the naïve approach. We run these experiments on 128 compute nodes
(4,608 cores).

Exploratory Search. We present an exploratory search scenario where the user starts from an
over-constrained search template and the system progressively relaxes the template by removing
edges until matches are found. The search progresses as follows: First, all variations of the initial
search template with one edge removed are searched; then all variations with two edges removed
are searches, and so on; until matches for at least one pattern are found. The system returns a
subgraph that is the union of all matches at the first level where matches are found. As in the
case of interactive incremental search described earlier, here, the key enabler is to identify the
candidate set and use this reduced set in the later iterations of the search, as well as reuse the
result of non-local constraint checking.

Figure 11(b) shows the runtime (when using 128 nodes), broken down to each level, for such a
search, in the WDC graph, starting from an undirected 6-Clique (WDC-7 pattern in Figure 11(a)).
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Fig. 11. (a) The WDC pattern used for demonstration of exploratory search in Section 7.7. (b) Runtime for
WDC-7, grouped by multiple levels depending on the number of edges removed from the initial search
template. Note that no match is found until k = 4 edges are removed. X -axis labels: (First row) k is the
number of edges removed. (Second row) |pk | is the number of distinct patterns that exist at level k ; (third
row) |V ∗

k
| is the number of vertices that participate in any match of a pattern p ∈ pk ; (bottom row) average

search time per pattern at each k . X -axis label “C” represents the initial candidate set generation. Note that
the Y axis is in log scale.

For this search template, the first matches are found only after four edges are removed and involves
sifting through over 1,900 variations of the original search template—only 144 vertices participate
in these matches. Note that reducing the search space to the candidate set and the high efficiency
of the exact matching pipeline (on average, it takes less than 6 seconds to explore each variant of
the template), enables this type of exhaustive search.

7.8 Comparison with State-of-the-Art Systems

We empirically compare our work with three state-of-the-art pattern matching systems QFrag
[Serafini et al. 2017], TriAD [Gurajada et al. 2014], and Arabesque [Teixeira et al. 2015]. QFrag is
a generic pattern matching system; we use it for comparison using labeled patterns. Arabesque,
although requires effort for writing pattern search algorithms, has demonstrated the ability to
scale to much larger graphs; we use this system for comparison using unlabeled patterns. Since
both QFrag and Arabesque are based on Apache Spark [Spark 2017] and inherit its limitations; we
also compare with an MPI-based solution, TriAD.1 Similarly to our system, all these three systems
offer exact matching with 100% precison and 100% recall. For all experiments, we report time for
a single query. We do not report time spent in graph loading and partitioning, and preprocessing
(such as index creation in TriAD), as they are done once for each graph dataset, but we note that
our system performs better or as well as the other systems.

We run these experiments using real-world graph datasets, on a large shared memory platform:
the machine is equipped with four Intel Xeon E7-4870v2 @2.30 GHz CPU-sockets—a total of 60
CPU cores and 120 MB L3 memory, and 1.5 TB main memory. For QFrag and Arabesque, we deploy
HDFS on the local SAS disk array (in RAID-5).

1Although TriAD is an RDF query processing engine and follows a distributed join-based design, it has been shown to

perform well for scale-free graphs [Serafini et al. 2017]. Furthermore, TriAD is the only well-performing MPI-based exact

matching solution that is publicly available for evaluation.
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Fig. 12. The patterns (reproduced from Serafini et al. [2017]) used for comparison with QFrag and TriAD
(results in Table 5). The label of each vertex is mapped, in alphabetical order, to the most frequent label of
the graph in decreasing order of frequency. Here, a represents the most frequent label, b is the second most
frequent label, and so on.

Table 5. Performance Comparison between QFrag, TriAD and PruneJuice
Using the Patterns in Figure 12

QFrag TriAD PruneJuice MPI PruneJuice OpenMP
Patent YouTube Patent YouTube Patent YouTube Patent YouTube

Q4 4.19 8.08 12.24 43.93
0.238 0.704 0.100 0.400
0.223 1.143 0.010 0.010

Q6 5.99 10.26 0.89 16.49
0.874 2.340 0.070 1.730
0.065 0.301 0.005 0.010

Q7 6.36 11.89 1.08 11.16
0.596 1.613 0.130 0.820
0.039 0.180 0.005 0.010

Q8 10.05 14.48 0.93 29.09
0.959 2.633 0.100 1.370
0.049 0.738 0.001 0.010

The table shows the runtime in seconds for full enumeration for QFrag and TriAD. For PruneJuice, we split time-to-

solution into pruning time (top row) and enumeration time (bottom row). The best distributed runtime for a query, for

each graph, is shown in bold.

7.8.1 Comparison with QFrag. Similarly to our solution, QFrag targets exact pattern match-
ing on distributed platforms, yet there are two main differences: QFrag assumes that the en-
tire graph fits in the memory of each compute node and uses data replication to enable paral-
lelism. More importantly, QFrag employs a sophisticated load balancing strategy to achieve scal-
ability. QFrag is implemented on top of Apache Spark and Giraph [Giraph 2016]. In QFrag, each
replica runs an instance of the TurboISO [Han et al. 2013] pattern enumeration algorithm (essen-
tially an improvement of Ullmann’s algorithm [Ullmann 1976]). Through evaluation, the authors
demonstrated QFrag’s performance advantages over two other distributed pattern matching sys-
tems: (i) TriAD [Gurajada et al. 2014] (which we confirm) and (ii) GraphFrames [Dave et al. 2016;
GraphFrames 2017], a graph processing library for Apache Spark, also based on distributed join
operations.

Given that we have demonstrated the scalability of our solution (Serafini et al. demonstrate
equally good scalability properties for QFrag [Serafini et al. 2017], yet on much smaller graphs),
we are interested to establish a comparison baseline at the single node scale. To this end, we run
experiments on a modern shared memory machine with 60 CPU cores, and use the two real-world
graphs, Patent and YouTube, and four query patterns (Figure 12) that were used for evaluation
of QFrag [Serafini et al. 2017]. We run QFrag with 60 threads and HavoqGT with 60 MPI pro-
cesses. The results are summarized in Table 5: QFrag runtimes for match enumeration (first pair of
columns) are comparable with the results presented in Serafini et al. [2017], so we have reasonable
confidence that we replicate their experiments well. With respect to combined pruning and enu-
meration time, our system (second pair of columns, labeled PruneJuice MPI, presenting pruning
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and enumeration time separately) is consistently faster than QFrag on all the graphs, for all the
queries. We note that our solution does not take advantage of shared memory of the machine at the
implementation level (we use different processes, one MPI process per core), and has the system
overhead of MPI-based communication between processes. Additionally, unlike QFrag, our system
is not handicapped by the memory limit of a single machine as it supports graph partitioning and
can process graphs larger than the main memory of a single node.

To highlight the effectiveness of our technique and get some intuition on the magnitude of the
MPI overheads in this context, we implemented our technique for shared memory (we use OpenMP
for parallelization) and present runtimes (when using 60 threads) for the same set of experiments
in Table 5 (the two rightmost columns, labeled PruneJuice OpenMP). We notice up to an order of
magnitude improvement in performance compared to the distributed implementation running on
a single node.

In summary, our distributed (PruneJuice MPI) solution works about 4–10× faster than QFrag,
and, if excluding distributed system overheads and considering the pruning time for the shared
memory solution (PruneJuice OpenMP) and conservatively reusing enumeration runtime for the
distributed solution, it is about 6–100× faster than QFrag.

7.8.2 Comparison with TriAD. TriAD [Gurajada et al. 2014] is distributed RDF [RDF 2017]
engine, implemented in MPI, and based on an asynchronous distributed join algorithm that
uses partitioned locality-based indexing. The RDF, is a metadata/typed graph model [RDF 2017],
where information is stored as a linked Subject-Predicate-Object triple. The Subject, Predicate

and Object are essentially designated types for graph vertices (forming a triple) and the links
between them are edges in the graph. An RDF SPARQL [SPARQL1.0 2017] query disassembles a
search template into a set of edges and the final results are constructed through multi-way join

operations [Gurajada et al. 2014].
TriAD’s design follows the classical master-worker architecture at indexing time, but allows

for a direct, asynchronous communication among the worker nodes at query processing time.
TriAD’s index structure is optimized for processing hash joins. TriAD employs hash-based shard-

ing for data partitioning and partitioning information in encoded into the triples; which enables
locality awareness and allows potentially large number of concurrent join operations by multiple
worker nodes without the need for remote communication. Furthermore, in TriAD, the master
node maintains a global index statistic (collected at local index creation time on worker nodes).
This information is used by the query plan generator: query optimization is informed by a unified
cost model for optimizing relational join operations.

We run the same experimnets for TriAD as we did earlier for comparison with QFrag, on the
same graph datasets, queries, and large shared memory platform. The experiment results are sum-
marzed in Table 5, in the columns next to the QFrag results. For the smaller, less skewed, and
sparser Patent graph, except for search template Q4, TriAD’s performance is on par with the dis-
tributed implementation of PruneJuice (and better than QFrag). In all other cases, particularly for
the more skewed and dense YouTube graph, TriAD performs much worse. For Q4 and Q8, TriAD
is ∼5× and ∼2× slower than QFrag, and ∼20× and ∼9× slower than distributed PruneJuice.

Although at the implementation level TriAD shares some similarities with PruneJuice (e.g., it
leverages asynchronous processing); in contrast to QFrag and PruneJuice, TriAD follows a dif-
ferent design philosophy: distributed hash join operations. Whereas the solution approach QFrag
uses is can be categorized as graph exploration [Abdelaziz et al. 2017; Gurajada et al. 2014], an our
solution ads graph pruning based on constraint checking to this. As expected, high-level design
decisions are key drivers for performance: although QFrag operates within a managed runtime
environment (i.e., the Java Runtime Environment (JRE)) that is slower than the native MPI/C++
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Table 6. Performance Comparison between Arabesque
and Our Pattern Matching System (PJ)

3-Clique 4-Clique
Arabesque PJ (1) PJ (20) Arabesque PJ (1) PJ (20)

CiteSeer 3.2 s 0.04 s 0.02 s 3.6 s 0.06 s 0.02 s
Mico 13.6 s 27 s 11 s 1 min 72 min 21 min
Patent 1.3 min 17.3 s 1.6 s 2.2 min 32.8s 8.3 s
Youtube 6.5 min 2.1 min 12.7 s Crash 6.4 min 1.4 min
LiveJournal 8.9 min 2.4 min 11.2 s 2.5 hr+ 1.8 hr 41.3 min

The table shows the runtime for counting 3-Clique and 4-Clique patterns. Here, PruneJuice runtimes

for the single node, shared memory are under the column with header PJ (1) while runtimes for the

20 node, distributed deployment are under the column with header PJ (20).

runtime, and relies on TCP for remote communication, which again, is slower than MPI commu-
nication primitives (typically optimized to harness shared memory IPC); QFrag’s design enables
sophisticated load balancing that is crucial for achieving good performance in presence of often
highly skewed real-world graphs. Our design, in addition to harnessing asynchronous communica-
tion and embracing horizontal scalability, offers aggressive search space pruning while maintain-
ing small algorithm states to prevent combinatorial explosion; thus, able to scale to large graphs
as well as has been demonstrated to be performant for relatively small datasets. TriAD, although
implemented in MPI, the join-based design suffers in presence of larger graphs and patterns with
larger diameter.

In a recent study, Abdelaziz et al. [2017] pointed out a key scalability limitation of TriAD: Follow-
ing distributed join operations, to enable parallel processing, TriAD needs to re-shard intermediate
results if the sharding column of the previous join is not the current join column. This cost can be
significant for large intermediate results with multiple attributes. Also, their analysis in Abdelaziz
et al. [2017] shows the significant memory overhead of indexing in TriAD (often larger than the
actual graph topology). Also, we noticed that the overhead of index creation increases with the
graph size: index creation time for the Patent graph is about 2.5 minutes, which goes up to about
7.7 minutes for the larger Youtube graph.

7.8.3 Comparison with Arabesque. Arabesque is a exact matching framework offering precision
and recall guarantees, implemented on top of Apache Spark and Giraph [Giraph 2016]. Arabesque
provides an API based on the TLE paradigm, which enables a user to express graph mining algo-
rithms tailored for each specific search pattern, and a BSP implementation of the search engine.
Arabesque replicates the input graph on all worker nodes, hence, the largest graph scale it can sup-
port is limited by the size of the main memory of a single node. As Teixeira et al. [2015] showed
Arabesque’s superiority over other systems: G-Tries [Ribeiro and Silva 2014] and GRAMI [Elseidy
et al. 2014], we indirectly compare with these two systems as well.

For the comparison, we use the problem of counting cliques in an unlabeled graph (the implemen-
tation is available with the Arabesque release). This is a use case that is favourable to Arabesque as
our system is not specifically optimized for match counting. Table 6 compares results of counting
three- and four-vertex cliques, using Arabesque and our system (PJ), using the same real-world
graphs used for the evaluation of Arabesque in [Teixeira et al. 2015]. These experiments use the
same shared memory machine used earlier. Additionally, for PruneJuice, we present runtimes on
20 compute nodes. (We attempted Arabesque experiments on 20 nodes too, however, Arabesque
would crash with the out of memory (OOM) error for the larger Patent, Youtube, and LiveJournal

graphs. Each compute node in our distributed testbed has 128 GB main memory. Our multi-core
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Fig. 13. WDC patterns used for template topology sensitivity analysis. Templates (a) and (b) are monocycles,
each has a vertex with the label edu. Template (c) is created through union of (a) and (b). Templates (d) and
(e) are constructed from (c) by incrementally adding one edge at a time.

shared memory testbed, however, has 1.5 TB physical memory. Furthermore, for Arabesque, for
the workloads that successfully completed on the 20 node deployment, we did not notice any
speedup over the single node run.) Note that Arabesque users have to code a purpose-built algo-
rithm for counting cliques, whereas ours and QFrag are generic pattern matching solutions, not
optimized to count cliques only. Furthermore, in addition to replicating the data graph, Arabesque
also exploits HDFS storage for maintaining the algorithm state (i.e., intermediate matches).

PruneJuice was able to count all the clique patterns in all graphs; it took a maximum time of
1.8 hours to count 4-Cliques in the LiveJournal graph on the single node, shared memory ma-
chine. When using 20 nodes, for the same workload, the runtime came down to 41.3 minutes.
Arabesque’s performance degrades for larger graphs and search templates: Arabesque performs
reasonably well for the 3-Clique pattern, for the larger graphs—PruneJuice is at most 3.7× faster.
The 4-Clique pattern, highlights the advantage of our system: For the Patent graph, PruneJuice is
4× faster on the shared memory platform. For the LiveJournal graph, Arabesque did not finish in
2.5 hours (we terminate processing). For the Youtube graph, Arabasque would crash after runing for
45 minutes. PrinuJuice, however, completed clique counting for both graphs. For the smaller, yet
highly skewed Mico graph Arabesque outperforms PruneJuice: For the 4-Clique pattern, Arabesque
completes clique counting in about one minute, where as it takes PruneJuice 72 minutes on the
same platform; this workload highlights the advantage of replicating the data graph for parallel
processing that also presents the opportunity for harnessing load balancing techniques that are
efficient and effective.

7.9 Analyzing Sensitivity to Search Template Properties

We investigate the influence of template properties, such as label selectivity and topology, on the
runtime of the graph pruning procedure. For this study, we consider the WDC graph and the
patterns in Figures 4 and 13.

Impact of Label Selectivity. We consider the WDC-3 and WDC-4 patterns (Figure 4): WDC-4,
which has the same topology as WDC-3 yet has labels that are less frequent. The two patterns
share five out of the eight vertex labels; the labels of WDC-3 and WDC-4, respectively, cover ∼15%
and ∼4% of the vertices in the background graph. For WDC-4, the solution subgraph (|V∗| = 430
and 2|E∗ | = 914) is about two orders of magnitude smaller than that of WDC-3 (see Figure 5). The
pruning time for WDC-4 is at most 2.6× faster on 512 nodes, averaging 1.8× faster across different
scales.

Impact of Template Topology. The template topology dictates the type and the number of
different constraints to be verified. For example, if the template has a single cycle (Figure 13(a)),
then only a single cycle check is required; if the template is not edge-monocyclic (e.g., Figure 13(d)),
then the relatively more expensive template-driven search is needed for precision guarantees. To
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Table 7. Runtime for Pruning (with Precision Guarantees) and Size of
the Pruned Solution Subgraph for Each WDC Pattern in Figure 13,

Used for Template Topology Sensitivity Analysis

Template (a) (b) (c) (d) (e)
|V∗| 413,527 548 18,345 39 8
2|E∗| 4,095,646 1,506 139,260 166 34
Time 41 min 39 s 2.6 min 2.1 min 1.8 min

The table lists the number of vertices ( |V∗ |) and edges (2 |E∗ |) in the solution

subgraph.

understand how the template topology influence performance, we study the WDC patterns in
Figure 13: Templates (a) and (b) each has a single cycle. Template (c) is created through union of
(a) and (b). Templates (d) and (e) are constructed from (c) by incrementally adding one edge at
a time. Templates (a)–(c) are edge-monocyclic, thus only need checking cycle constraints. Non-
edge-monocyclic templates (d) and (e) require the template-driven search; template (e) needs to
verify the existence of a 4-Clique (consisting of vertices with labels gov, org, edu, and net). From
the topology point of view, among all the constraints here in these examples, the clique is the the
most complex substructure and its verification requires the longest walk (TDS constraint). We run
these experiments on a 64 node deployment.

Table 7 lists the runtimes for pruning (with precision guarantees) for the WDC patterns in
Figure 13. The table also shows the number of vertices (|V∗|) and edges (2|E∗ |) in the solution sub-
graph for each pattern. While, at first sight, one would expect that the more constraints there are
to verify, the slower the system will prune to a precise solution, our experience with the patterns
in Figure 13 proves the contrary. Template (a) has only one four-cycle to check; however, it has the
slowest time-to-solution as it leads to a large solution subgraph (due to the presence of 400M+ ver-
tices in background graph with the labels org and net). Template (c) and the two templates (d) and
(e) that require template-drive search, show, on average, ∼20× faster time-to-solution compared
to template (a). The complex templates (c), (d), and (e) introduce additional local and non-local
constraints. There are at least an order of magnitude more vertices in the background graph, with
labels org and net, that satisfy the constraints of template (a) than that of templates (c), (d) and (e).
As a result, templates (c), (d), and (e) eliminate the majority of the non-matching vertices and edges
early, leading to a faster time-to-solution; with the most complex template (e) being the rarest and
the fastest to finish among the three.

A key observation here is that it is the abundance of the constraints (in the background graph)
that governs performance: template (c), which incorporates the four-cycle constraint that is not
present in (b), has an order of magnitude more vertex and edge matches in the background graph,
as well as has a slower runtime than that of (b). Similarly, there are only a handful of vertices in
the background graph that satisfy the requirements of the complex substructure of (e), i.e., they
belong to a clique. Rarity of this constrain leads to rapid pruning, resulting in (e) achieving a faster
time-to-solution compared to (c) and (d).

7.10 Pattern Matching in Graphs with Diverse Topology

We demonstrate the ability of effectively processing both labeled and unlabeled graphs with differ-
ent topological properties: vertex degree distributions, edge density and diameter. To this end, we
use there real-world graphs: Twitter, UK Web, and Road USA (graph properties are listed in Table 4);
and three R-MAT generated graphs (same size yet different vertex degree distribution, Figure 14).
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Fig. 14. Figures (a)–(c) show vertex degree distribution of three R-MAT generated graphs with varying skew-
ness. The figures show R-MAT edge probabilities (A,B,C,D) used. For (a)–(c), X and Y axes are in the log
scale. Here, the graph Scale (30) and directed edge factor (16) are the same for all three graphs. The storage
requirement for each graph is ∼270 GB. Figure (d) shows vertex degree distribution of the large diameter
Road USA graph. Here, only the Y axis is in log scale.

We present runtimes for full match enumeration. We run each experiment on 64 compute nodes;
except for the smaller Road USA, for which we use eight compute nodes.

7.10.1 Large Real-World Power Law Graphs. Twitter and UK Web are billion edge, real-world
graphs that have previously used to study a wide range of graph analysis problems; yet, rarely
in the context of exact pattern matching. Although both are power-law graphs, they have signifi-
cantly different topologies: Twitter has a more skewed degree distribution, but the larger UK Web
graph is denser—it has a higher average vertex degree.

Since Twitter and UK Web graphs are unlabeled we use the same labeling technique used in the
past [Plantenga 2013; Serafini et al. 2017]—we randomly assign vertex labels. For the Twitter graph,
up to 150 unique labels uniformly distributed among ∼41M vertices. For the relatively less skewed
UK Web graph, we use up to 100 labels. For our experiments, we consider some of the patterns in
Figure 12 (previously used by Serafini et al. [2017]). Table 8 lists, for each search template, the full
match enumeration time (includes time spent in pruning), match count, and the number of vertices
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Table 8. Full Match Enumeration Time, for Some of the Search Queries
in Figure 12, in the Twitter and UK Web Graphs (Table 4)

Twitter UK Web
#Unique vertex labels 50 100 150 25 50 100

Template Q4 Q6 Q8 Q4 Q6 Q8
|V∗| 944K 91K 25K 8M 1.4M 230K
2|E∗| 6M 950K 338K 67M 13M 2.5M

Match count 10B 78M 615M 3.8B 2.1B 45B
Time 1.2 hr 5 hr 1 hr 12.6 min 49.4 min 8.1 hr

For each template, the table lists number of vertices ( |V∗ |) and edges (2 |E∗ |) in the final so-

lution subgraph, match count, and time-to-solution (includes time spent in pruning and match

enumeration).

Table 9. Match Counting in the Road USA Graph: The Reported
Runtimes Include Time Spent in Pruning as Well as Match Counting

Unlabeled template UQ4 5-Star 3-Clique 4-Clique
Match count 220M 66M 1.3M 90

Time 26.7 s 17.3 s 5.0 s 1.6 s

UQ4 has the same topology as Q4 in Figure 12; however, it is unlabeled. The 5-

Star pattern is an acyclic graph—a central vertex with four one-hop neighbors

(mimicking a four way stop or an intersection). Given that the Road USA graph is

relatively small, we run these experiments on eight compute nodes.

and edges in the solution subgraphs. The results suggest the abundance of acyclic substructures
are higher in the Twitter graph (10B matches for Q4, compared to 3.8B in the UK Web graph). The
denser UK Web graph has a higher concentration of the cyclic patterns, Q6 and Q8. Q8 is the most
abundant—over 45B matches in the background graph; however, the long search duration suggests
matches are potentially concentrated within a limited number of graph partitions that limits task
parallelism. Similar reasoning applies to long search duration of Q6 in the Twitter graph. (We
discussed limitations stemming from load imbalance due to such artifacts in Section 7.6.)

7.10.2 Large Diameter Real-World Network. The Road USA graph has a very large diameter and
is not labeled. Table 9 lists runtimes for counting matches for four unlabeled patterns. Results
show, on the one side, abundance of small acyclic patterns compared to cyclic structures in the
road network graph, and on the other side, the ability of our framework to support searches on
large, unlabeled graphs with a completely different topology.

7.10.3 Experiments on Synthetic Graphs with Varying Vertex Degree Distribution. We further
evaluate our system in presence of graphs with vastly different topologies using R-MAT gener-
ated synthetic graphs [Chakrabarti et al. 2004]. To generate power-law graphs, the R-MAT model
recursively subdivides the graph (initially empty) into four equal-sized partitions and distributes
edges within these partitions with predetermined probabilities. Each edge chooses one of the four
partitions with probabilities A, B, C = B, and D, respectively. These probabilities, determine the
skewness of the generated graph: in summary, the higherA is the more skewed the power-law dis-
tribution becomes. For our experiments, we create three R-MAT graphs with the following sets of
probabilities: (i) the configuration used by the Graph 500 benchmark (0.57, 0.19, 0.19, 0.05); (ii) pa-
rameters suggested in Chakrabarti et al. [2004] to simulate real-world scale-free graphs (0.45, 0.15,
0.15, 0.25); and (iii) equal probability for all four partitions to create graphs with uniform degree
distribution (also known as the Erdős-Rényi graph), (0.25, 0.25, 0.25, 0.25). Figure 14(a)–(c) shows
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Table 10. Searches in the Three R-MAT Graphs, in Figure 14(a)–(c),
with Varying Degree Distribution, Using the Q4 Pattern in Figure 12 and the

RMAT-2 Pattern in Figure 7

Graph500 Chakrabarti et al. Uniform
#Unique vertex labels 26 17 8

Q4

|V∗| 4.4K 641M 7.5M
2|E∗| 7K 3.5B 16.4M

Match count 946 4B 4.2M
Time 4.2 s 174.2 s 54.1 s

RMAT-

2

|V∗| 2.3K 313M 0
2|E∗| 4.1K 920M 0

Match count 551 1.4B 0
Time 8.7 s 83.4 s 52.5 s

For each query in each graph, the table lists the number of vertices ( |V∗ |) and edges

(2 |E∗ |) in the pruned solution subgraph, number of matches and time-to-solution (in-

cludes time spent in pruning and match enumeration).

the degree distribution of these R-MAT graphs. For all the graphs, we use the same Scale (30) and
(directed) edge factor (16), leading to (undirected) graphs with 34B edges. We follow the same
approach as used for weak scaling experiments in Reza et al. [2018], Section 5A, to generate ver-
tex labels: We use vertex degree information to create vertex labels, computed using the formula,
�(vi ) = �log2 (d (vi ) + 1)�.

Table 10 shows results for full match enumeration in the three R-MAT graphs for the following
two queries: Q4 in Figure 12 and RMAT-2 in Figure 7. For both search templates, most matches
are found for the configuration labeled Chakrabarti et al. This is because the graph in Figure 14(b)
has a higher frequency of high-degree vertices compared to the graphs in Figure 14(a) and (c);
since we use degree-based vertex labels, this has direct impact on match density. Although, for the
smaller Q4 pattern, the R-MAT graph with uniform degree distribution has more matches than the
Graph 500 configuration; in the uniform graph, no matches were found for the larger seven vertex
RMAT-2 pattern with unique labels: Low variance in degree distribution means 99.9% of the graph
vertices have one of the top four most frequent labels.

8 LIMITATIONS

We categorize the limitations of our proposed system based on their respective sources.

Limitations stemming from major design decisions. Our pipeline inherits the limitations
of systems primarily designed for exact matching (compared to systems that trade accuracy for
performance, e.g., based on sampling [Iyer et al. 2018] or graph simulation [Fan et al. 2010]).
Similarly, our system inherits all limitations of its communication and middleware infrastructure,
MPI and HavoqGT, respectively. One example is the lack of sophisticated flow/congestion control
mechanism provided by these infrastructures that sometimes lead to message buildup and system
collapse.

Limitations stemming from the targeted uses cases. In the same vein, we note that our
system targets a graph analytics scenario (queries that need to cover the entire graph), rather
than the traditional graph database queries that attempt to find a specific pattern around a vertex
indicated by the user.
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Limitations stemming from attempting to design a generic system. Systems optimized for
specific patterns may perform better, e.g., systems optimized to count/enumerate triangles [Suri
and Vassilvitskii 2011], treelets [Zhao et al. 2012], or systems relying on multi-join indices [Sun
et al. 2012] to support patterns with limited diameter.

9 CONCLUSION

This article presents a new algorithmic pipeline to support pattern matching on large-scale meta-
data graphs on distributed memory systems. We capitalize on the idea of graph pruning via con-

straint checking and develop asynchronous algorithms that use both vertex and edge elimination to
iteratively prune the original graph and reduce it to a subgraph that is the union of all matches. We
have developed pruning techniques that guarantee a solution with 100% precision (i.e., no false pos-
itives in the pruned subgraph) and 100% recall (i.e., all vertices and edges participating in matches
are included) for arbitrary search patterns. Our algorithms are vertex-centric and asynchronous, thus,
they map well onto existing high-performance graph frameworks. Our evaluation using up to 257
billion edge real-world graphs and up to 4.4 trillion edge synthetic R-MAT graphs, on up to 1,024
nodes (36,864 cores), confirms the scalability of our solution. We demonstrate that, depending on
the search template, our approach prunes the graph by orders of magnitude that enables match
enumeration and counting on graphs with trillions of edges. Our success stems from a number
of key design ingredients: asynchronicity, aggressive vertex and edge elimination while harness-
ing massive parallelism, intelligent work aggregation to ensure low message overhead, effective
pruning constraints, and lightweight per-vertex state.

While we believe our system, as described, represents a significant advance in practical pattern
matching in large, real-world graphs, further investigations in a number of areas can improve the
efficiency and robustness of our solution. (i) The graph pruning pipeline introduces a number of de-
cision problems. At present it uses ad-hoc heuristics, developed based on our intuition. We believe
modelling approaches similar to the one explored in Tripoul et al. [2018] can be used to inform the
following decisions: constraint selection and ordering, when to trigger load balancing, and when
to switch from pruning to direct enumeration. (ii) The current prototype implementation can be
extended to enable support for a richer set of subgraph matching scenarios, e.g., pattern match-
ing in graphs and templates with edge metadata; querying dynamic/time-evolving graphs [Boldi
et al. 2008; Han et al. 2014; Sallinen et al. 2016; Vora et al. 2017] and approximate pattern match-
ing [Alon et al. 2008; Bunke and Allermann 1983; Conte et al. 2004; Iyer et al. 2018]. (iii) Further
design/system optimizations, especially for non-local constraint checking and full match enumer-
ation, to improve memory and message efficiency, load balance and task parallelism.
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