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Abstract—In this paper, we build a TC-Stream, a high-performance graph processing system specific for a triangle counting algorithm

on graph data with up to tens of billions of edges, which significantly exceeds the device memory capacity of Graphics Processing Units

(GPUs). The triangle counting problem is a broad research topic in data mining and social network analysis in the graph processing

field. As the scale of the graph data grows, a portion of the graph data must be loaded iteratively. In the existing literature, graphs with

billions of edges need to be done distributively, which is cost-intensive. Also, many disk-based triangle counting systems are proposed

for CPU architectures, but their tackling performances are inefficient. To solve the above problem, we propose TC-Stream, and it

focuses on three issues: 1) For power-law graphs, because the amount of tasks of each vertex or edge is inconsistent, it is bound to

cause different demands of computing and memory resources for different task types. We propose a parallel vertex approach and the

reordering of vertices for graph data that can be placed in the GPU device memory to ensure the maximum workload balancing; 2) A

binary-search-based set intersection method is designed to achieve the maximum parallelism in GPU; 3) For the graph data that

exceeds the GPU device memory capacity, we develop a novel vertical partition algorithm to guarantee the independent computing on

each partition so that the three computation processes, i.e., the computation on GPU, the data transmission between main memory of

CPU and SSD, and the communication between the CPU and the GPU can be perfectly overlapped. Moreover, the TC-Stream

optimizes edge-iterator models and benefits from multi-thread parallelism. Extensive experiments conducted on large-scale datasets

showed that the TC-stream running on a single Tesla V100 GPU performs 2:4� 6� and 1:8� 4:4� faster than the state-of-the-art

single-machine in-memory triangle counting system and GPU-based triangle counting system, respectively, and achieves 2:4� faster

than the state-of-the-art out-of-core distributed system PDTL running on an 8-node cluster when processing the graph data with 42.5

billion edges, which demonstrates the high performance and cost-effectiveness of the TC-Stream.

Index Terms—Triangle counting, vertical partition, out-of-core, GPU, parallel processing

Ç

1 INTRODUCTION

GRAPH data plays a critical role in many fields in the big
data area, and the sparse patterns can be used to reveal

hidden patterns in complex data. For example, linked data
in various fields such as social networks, bioinformatics,
web pages, road networks, and brain neural networks can
generally be stored in the form of graphs. With the growth
of graph data scales, the road network graphs often contain
hundreds of millions of edges, the social network graphs

contain hundreds of billions of edges, while the web page
graphs contain trillions of edges. With such a large graph
size, it is difficult to count the number of triangles quickly.
Triangle Counting (TC) and Clustering Coefficient are often
used together in graph neural networks [1], [2], [3], [4].
Graph pattern mining [5], [6], triangle counting algorithm
has been widely used in fraud detection, community dis-
covery [7], and in clusters in social and data mining [8]. At
the same time, the rapid development of the general-pur-
pose GPU (GPGPU) has brought about a revolution in
many fields of computing [9], [10], [11]. From Table 1, we
can see that massive cores and large memory bandwidth
make the GPU become a graph data mining algorithm with
high time complexity, such as accelerating triangle count-
ing, which brings new hope.

Existing works have achieved great success in accelerat-
ing graph processing on GPU, such as Breadth-First Search
(BFS) [12], [13], PageRank [14], Graph Label Propagation
[15], etc. The GPU has a higher acceleration ratio than the
CPU in the triangle counting algorithm for graph data
when a data size fits into a GPU device’s memory capacity.
However, this does not come for free. For graph data whose
size exceeding the GPU device memory capacity, costly
data transfer between the CPUs and GPUs is inevitable [16],
[17], [18], [19], [20], [21], and the speed of which is limited
by the maximum bandwidth of PCIe (16GB/s). The device
memory capacity is fixed in PCB and cannot be expanded
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like RAMarchitecture. Themost advancedGPUdevicemem-
ory size is 32GB, corresponding to the storage of 8 billion
edges. Some works research out-of-core strategy [22], [23],
[24] that divides data into blocks and overlaps the data trans-
fer with GPU computation to hide the communication over-
head, the multi-GPU strategy [25], [26], [27] as well as the
distributed GPU cluster strategy [28], [29]. How to partition
to overlap the calculation and data transfer is a challenge.

Since triangle counting (TC) algorithm has been widely
used in fraud detection, community discovery [7], clusters in
social and data mining [30], many researchers have studied
the in-memory systems [31], [32], [33], [34], [35], [36], [37],
out-of-core systems [38], [39], [40], [41], [42] and the approxi-
mate counting systems [43], [44], [45], [46], [47] that support
triangle counting algorithm. However, these systems are all
optimized for the CPU architecture. In recent years, the GPU
heterogeneous computing platforms take advantage in terms
of computational performance, memory bandwidth, and
energy efficiency compared to the general-purpose CPU
computing platforms, which are gradually being widely
used in many general-purpose computing fields, and also
provide opportunities in the processing of large-scale graph
data with efficiency. The existing single-node GPU-based tri-
angle counting systems [48], [49], [50] cannot process large
scale graph data due to the limited GPU device memory
capacity. In contrast, the distributed ones [51], [52], [53], [54]
need to use a large number of servers, which is cost-inten-
sive. MapReduce-based graph processing [23] first propose
an out-of-core GPU data management technique that can
process large-scale graph data due to the limited GPU device
memory capacity, GraphReduce [24] adopts a combination
of edge- and vertex-centric implementations, achieved state-
of-the-art out-of-core GPU implementation.

On the CPU architecture, the state-of-the-art approach
[33] is CPU-aware merge-based method [37], [55], [56], [57],
[58]. The intersection algorithm uses the CPU Single Instruc-
tion Multiple Data(SIMD) instructions to accelerate the set
intersections in graph algorithms. Unfortunately, due to the
different architecture of the GPU and the CPU, the same
design brings non-trivial technical challenges to the GPUs.
The fundamental strategy for dealing with graphs on the
GPUs is to distribute neighbor vertex of the adjacency list
evenly into a balanced workload spread across multiple
threads. That is different from the triangle count on CPU
because the GPUs kernel cannot actively call a thread from
the CPUs memory to the GPUs memory copy via the GPU
threads. In contrast, all the GPUmemory copying operations
must be done before computation can be performed on the
GPU. There are three main challenges in designing a system
that supports high performance based on out-of-core storage

(such as SSD) and GPU: (1) during vertex parallelism, and
the traditional parallel approach will evenly distribute all
vertices to each thread. Due to the power-law distribution of
the graph, the workload for each block is not balanced. There
comes the first challenge on how to design a dynamic sched-
uling algorithm for the load balance of each thread; (2) since
the memory accesses of merge-based set intersection opera-
tions are mainly random accesses on the CPU, the second
challenge is how to design a newGPU-aware set intersection
approach; (3) for graph data with data size exceeding the
GPU device memory capacity, how to develop a graph parti-
tioning approach to overlap the GPU computing and the
data transfer between CPU and GPU to achieve efficient par-
allelism becomes the third challenge.

To address these challenges, we develop the TC-Stream.
Our main contributions are listed as follows:

� For power-law graphs skewed out-degree distribu-
tion. We propose a parallel vertex approach and the
reordering of vertices for graph data that can be
placed in the GPU device memory, which allows
each block to acquire the new vertices counting by
recording the newest vertex and the offset to ensure
the load balance of each thread and improve the par-
allel efficiency.

� We devise a novel GPU-aware binary search tree and
lookup tree optimizations to support an efficient
memory access pattern that is more suitable for the
GPU architecture so that the in-warp parallelism on
the GPU can be maximized.

� We design a Vertical Partition approach, which
makes the computing on each block independent.
Then we perform a compressed sparse row (CSR) for
each partition so that the computation on GPU, the
data transmission between main memory of CPU
and SSD, and the communication between the CPU
and the GPU can perfectly overlap.

Our system TC-Stream is evaluated on real-world
graphs, using a Tesla V100 GPU. The result shows that our
system is 2:4� 6� and 1:8� 4:4� faster when compared
with the current state-of-the-art single-machine in-memory
CPU-based system [33] and single-GPU system [24], [48],
respectively. Furthermore, TC-Stream performs 2:4� faster
than the out-of-core CPU system PDTL running on eight
nodes when processing the graph with 42.5 billion edges,
which provides low cost and high efficiency.

The rest of the paper is organized as follows: Section 2
gives the Background and the Related Work. Section 3
describes themotivation of TC-Stream. Section 4 presents the
main challenges and optimization techniques for TC-Stream.

TABLE 1
Hardware Features of the GPUs Used for Performance Measures

P100 Titan X Tesla Tesla Tesla

PCIE 16GB Pascal V100 16GB K40 1080Ti

Architecture Pascal Pascal Volta Kepler Pascal
Cores/SMs 3,584 / 56 3,584 / 28 5120/80 2,880 / 15 3,584 / 28
Memory 16GB 12GB 16GB 12GB 11GB
Bandwidth 732GB/s 480GB/s 900GB/s 388GB/s 388GB/s
Max clock 1.33GHz 1.53GHz 1.45GHz 1.11GHz 1.1GHz
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Section 5 evaluates the performance of our policy, and Sec-
tion 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section, we survey some relevant studies. First, we
review the literature on GPU-based graph processing. Sec-
ond, we review the existing methods for triangle counting.

2.1 GPU-Based Graph Processing

With the development of GPGPU technology, the GPU has
naturally become an option in graph computing accelera-
tion [59], [60], [61]. As a standard general processor, the
CPU not only sets a certain number of computing units but
also focuses on the design of complex cache systems, branch
prediction systems, and various control logic, which will
bring extra overhead. By contrast, the GPU uses most of the
transistors on the chip as pure computing units. Such an
architectural design determines that the GPU has a strong
computing capacity, especially for the computing tasks suit-
able for the SIMD parallel model [62], [63], [64], [65], [66],
[67], [68]. Since the graph has many vertices, many edges,
and complex data dependence, and most graph vertex proc-
essing tasks have the same execution function, then the
graph data processing tasks are very suitable for the GPU
acceleration.

Medusa[69] system has designed a set of API interfaces,
and users can easily use the GPU to accelerate chart process-
ing. Medusa defines the basic data structure, adopts the CAA
storage model, integrates thread access to access address,
and reduces I/O overhead. The system still adopts the syn-
chronous computing model, based on the NVIDIA-CUDA
architecture, which simplifies the GPU programming pro-
cess. However, Medusa did not design a data partition strat-
egy and directly transferred all the data into the device
memory for processing. In this way, the size of data process-
ing is limited by the size of the GPU device memory. No
attempt was made to solve the problem of low task concur-
rency during the GPU accelerated processing. CuSha[70] sys-
tem is an open-source CUDA-based GPU graph processing
system, which designs two new data structures to overcome
the low efficiency of parallel access caused by traditional CSR
structure. The two data structures are G-shards and
ConcatenatedWindows (CW) format, respectively.

Besides, some work in the GPU graph computing system
solves the problem of computing load imbalance by setting
the concept of virtualWarp, which allows the nodes that com-
pute the negative load to be executed by virtual Warp, which
can be composed of 32 or even 64 threads to simultaneously
perform the same computing task, to disperse the computing
tasks with the negative load. In terms of implementing the
hybrid system, based on the BFS algorithm, Hong’s work has
designed a kind ofCGC executionmodel. The task in the early
stage of the algorithm is performed by the CPU, which
involves few vertices. If the responsibility is handed to the
GPU, it cannot fully exert its concurrency capacity. In themid-
dle of the algorithm, tasks involvingmore vertices and higher
concurrent demands are transmitted to the GPU for execu-
tion. In the finishing part of the algorithm, the few functions
in the final section are performed back in the CPU. However,
the GPU graph computing system is mainly based on the BSP

synchronous processing model, and communication over-
head severely impacts GPU performance. It fails to solve the
problem of processing graph data exceeding the GPU mem-
ory size efficiently. This work proposes a Vertical partition
approach to make the GPU computing and I/O overlap to
achieve efficient parallelism. The Vertical Partition is not lim-
ited to triangle counting since its computation pipeline gener-
alizes to a wide range of parallel graph algorithms on the
GPUs, such as Clique, Motif Counting (MC), and Frequent
Sub-graphMining (FSM).

2.2 Existing Triangle Counting Models

The standard method to solve the triangle counting problem
is to intersect two adjacency-list of two adjacent vertices,
and the algorithm has four views: vertex-centric (Algorithm
1), edge-centric (Algorithm 2), merge-based, and hash-map-
based (Algorithm 3).

Algorithm 1. Vertex-centric: Each Thread Works on one
Vertex

1: G ¼ ðE; V Þ;
2: for u 2 V inparallel do
3: for v 2 NðuÞ do
4: countþ ¼ Intersectionðu; vÞ;
5: end for
6: end for

Algorithm 2.Edge-Centric: Each ThreadWorks one Edge

1: G ¼ ðE; V Þ;
2: for ðu; vÞ 2 Einparallel do
3: countþ ¼ Intersectionðu; vÞ;
4: end for

We adopt the following measures to insure that each tri-
angle will be counted only once: first, calculate each vertex
degree, denoted by degðvÞ; second, sort degðvÞ and get an
increasing sequence, orderðvÞ, to ensure that degðvÞ <¼
degðuÞ if orderðvÞ < orderðuÞ; third, delete the repeating
and self-looping edges using orderðvÞ to make a new adja-
cency list, which guarantees that each triangle is counted
only once. Let NþðvÞ=uju 2 NðvÞ and orderðvÞ < orderðuÞ.

T ðu; vÞ ¼ intersectðNþðuÞ \NþðvÞÞ: (1)

We can then conclude that for each ðu; vÞ 2 E, the num-
ber of element in T ðu; vÞ is the number of triangles that cov-
ered edgeðu; vÞ. Obviously, the number of all triangles in
GðV;EÞ is Pv2V

P
u2Nþv T ðu; vÞ (1), and the time complexity

of this algorithm is OðdEÞ, where jEj is the total number of
edges, while d is the average time complexity to compute
NþðuÞ \NþðvÞ, which can be equal or less than the average
number of the two sets.

Merge-based approach: it’s an efficient method in the
CPU that solves the intersection using the merge-based pro-
cess. Two points are needed when we compute the intersec-
tion of two adjacency vertices from edgeð0; 1Þ. They point to
the first element of the sets, respectively, at the beginning.
When the part is the same in two groups, we find a new tri-
angle, adding 1 for two points. Otherwise, only the point
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with a minor element needs to add 1. In a word, the time
complexity of the merge-based algorithm is

P
v2V d2ðvÞ

Hash-map-based approach: Algorithm 3 describes the
pseudo-code of the hash-map-based algorithm. Suppose all
the vertices are sorted in increasing order by their IDs, then
we use the hash-map to record the adjacency of the vertex
vi, and the bitwise AND operator to find quickly. The lower
M bits of vertex ID is the hash value. This will produce a
hash-map-base with a size of 2M .

Algorithm 3. Hash-map-based Triangle Counting
Approach

1: procedure TC-MAPBASEDðGðV;EUÞÞ
2: tc 0 "Initialize triangle count in G
3: for i 2 f1; . . . ;mszg do " msz is the size of Map
4: Map½i�  0
5: end for
6: for all vi 2 V do
7: for all vj 2 NþðviÞ do
8: Map:hashðvjÞ
9: end for
10: for all vj 2 NþðviÞ do
11: for all vk 2 NþðvjÞ do
12: ifMap:existsðvkÞ then
13: tc tc þ 1
14: end if
15: end for
16: end for
17: for all vj 2 NþðviÞ do
18: Map:deleteðvjÞ
19: end for
20: end for
21: return tc "Total triangle count in G

Summary. The existing graph processing system is opti-
mized for the triangle counting algorithm, and it achieves a
satisfactory performance. The Vertical partition proposed in
this paper is orthogonal to the two-dimensional division.
Since we focused on guaranteeing the independent comput-
ing on each partition effectively, computing on the GPU, I/
O from the SSD, and communication between the CPU and
the GPU can be perfectly overlapped. In other words, the
existing two-dimensional partition method can be used as
the preprocessing step of the vertical partition.

3 MOTIVATION OF TC-STREAM

In this section, we first introduce the Optimization of the
edge-based Triangle Counting algorithms. Next, we present
an overview of our TC-Stream system.

3.1 Graph Format on GPUs

A graph can be defined as G ¼ ðV;EÞ, where V is the set of
all vertices and E is the set of all edges, while jV j and jEj
are the number of vertices and edges, respectively. Fig. 1a is
an example of a directed graph, Fig. 1b is the corresponding
edge list, and Fig. 1d is the CSR format. As shown in
Fig. 1a, vertex v0, v1, and v3 constitute a triangle as any two
of them have an edge to connect. The triangle counting
problem is to find all the triangles in a given graph.

� The adjacency matrix needs OðV 2Þ space to store a
graph. Because the Scale-free property is too sparse
in the adjacency matrix, i.e., wasting much storage
space. Another way is to use a conventional adja-
cency list, which allocates a memory block for each
vertex. However, it results in many allocations and
releases operations, so the available memory is frag-
mented, reducing the operating efficiency.

� The edge list is also a common way to represent a
graph. It stores a pair of source and destination verti-
ces of an edge one by one, which occupies Oð2jEjÞ
space. Since this method has no point operation,
many existing graph frameworks adopted it, even
though it uses a larger space.

� The CSR is a format that compresses the adjacency
matrix by row. In an adjacency matrix, row K repre-
sents all the out-vertex from vertex K, containing
many zeros. So we have a chance to compress them.
CSR contains two arrays, idx and nbr. The nbr stores
all the out-vertex from all the vertices one by one,
and idx records the place of the first out-vertex of
each vertex in nbr. In another words, idx½i� and
idx½iþ 1� is the first and the last place in nbr that
stores the all out-vertex of vertex i. The storage space
of CSR format is jV j þ jEj. Note that jEj is one or
two orders of magnitudes larger than jV j in general.

Based on the locality and similarity of a graph, the neigh-
bors of a vertex are mainly close to it topologically. Their

Fig. 1. Direct graph representation in external storage.
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IDs are also close, so there is a high probability that all of
them will be distributed into one vertex set. We find that a
diagonal block, whose block row ID equals the block col-
umn ID, contains many edges, several orders of magnitudes
more significant than the non-diagonal block.

3.2 Triangle Counting Algorithms

In Fig. 1a, we useNþðuÞ to represent the out-vertex of u. Thus
, Nþð0Þ = 1; 2; 3; 4; 5; 6f g, Nþð1Þ = 3; 4; 7f g, Nþð2Þ = 5; 6; 8f g,
Nþð3Þ = 7f g,Nþð4Þ = 7f g,Nþð5Þ = 8f g,Nþð6Þ = 8f g. The total
degree of the whole graph is 16, and the total number of
intersection is 48, as shownAlgorithm 4 processing:

Algorithm 4. Edge-Iterator: Each ThreadWorks one Edge

Input: input parameters V, E , deg(vertex)
Output: output adjacency list Nþ
1: G ¼ ðE; V Þ;
2: for ðu; vÞ 2 E do
3: if degðuÞ > degðvÞ or ðdegðuÞ ¼¼ degðvÞ and u > vÞ then
4: swapðu; vÞ
5: NþðuÞ ¼ NþðuÞ [ ðvÞ
6: end if
7: end for

Nþð0Þ = 2; 3; 6f g, Nþð1Þ = 4; 5; 7f g, Nþð2Þ = 6; 8f g, Nð3Þ =
6; 8f g, Nð4Þ = 7; 8f g, Nð5Þ = 7; 8f g, Nð6Þ = 8f g, Nð7Þ = 8f g,

total degree is 16, and the total number of intersection is 26.

3.3 TCTC-StreamStream Overview

Fig. 2 describes the execution process between heteroge-
neous devices, with two components: a two-dimensional
partitioning algorithm for external memory and scheduling
based on CPU and GPU heterogeneity intersection. We eval-
uated the state-of-the-art GPU-based triangle counting proj-
ect. First of all, the merge-based intersection bandwidth has
a lot of device memory bandwidth. Therefore, we design a
GPU-friendly intersection scheme to solve this problem.
Because triangle counting is a computational-intensive
workload, we develop a graph partitioning strategy and
hide SSD-CPU-GPU data transfer overheads by overlapping
computations on GPUs and SSD-CPU-GPU data transfers.
To this end, we design the Vertical Partition approach of the
model, which uses the data structure of the edge list and the
CSR to store the original graph data in the SSD, respectively,
and adopt the edge-based calculation model. Each partition
is composed of a sub-edge list and the corresponding partial
CSR. The triangle counting algorithm between divisions is

independent. We found that the GPU of each MP of the
Shared memory of 48KB can perform efficiently concurrent
execution than operation. A set intersection method based
on a binary search tree is designed on GPU: an adjacency list
is used as the search table. An adjacency list acts as a binary
search tree, and the binary search tree is then traversed to see
if every element in the lookup table exists in the tree. At the
same time, two sub-CSR blocks and one sub-edge block are
loaded into GPU’s videomemory, and each sub-task can sat-
urate GPU’s computing capacity.

4 TCTC-StreamStream: OVERLAPPED AND PARALLEL

TRIANGULATION

The GPU-based external memory data processing is mainly
divided into four stages: Data preprocessing in external
memory (the original graph was transformed into a graph
model represented by CSR and Edgelist, and the edge set
was divided into blocks containing an equal number of edges
(the number of incoming edges + outgoing edges), data load-
ing in CPU (each edge set was divided into blocks and CSR
data blocks were loaded into the main memory space), data
transmission in CPU-GPU, and calculation in GPU. In the
process of edge set block partitioning, the block size is deter-
mined according to the device access memory that each block
can be stored entirely in the GPU. In the process of construct-
ing the graph data system, in order to support the diversified
graph data types, the uniform division of large-scale graph
data, and the parallel processing of graph data, the uniform
division of diversified large-scale graph data can effectively
reduce the Straggler overhead problem in the parallel proc-
essing of graph data. Second, the GPU’s external memory
data transmission cost in parallel processing usually takes
much running time. Therefore, in parallel data transmission
and calculation, adopting overlapping round scheduling and
asynchronous data transmission can significantly reduce the
external memory data transmission and synchronization
cost. In this paper, we propose a TC-Stream, which mainly
solves three problems: A TC-Stream uses a parallel vertex
approach for graph data that can fit in theGPU device mem-
ory, dynamically allocating the vertices into different GPU
blocks for parallel processing. Design a GPU-aware intersec-
tion scheme to maximize the GPU’s computing and memory
access capacity.

Partition the graph data that exceeds the GPU device
memory, since the GPU device memory can be loaded with
only one partition or most so that the partitions are indepen-
dent in triangle counting algorithm, the SSD� > CPU� >
GPU overhead is relatively large. We design a method that
makes it overlap to improve system performance.

4.1 Graph Vertical Partition

As for a 1-D partitioning[71], regardless of using an edge-
centric(Algorithm 2) or a vertex-centric (Algorithm 1)
scheme, the partitions will inevitably have the problem of
data interdependence, which results in an incomplete over-
lap of the I=O and the CPU calculations. A significant prob-
lem we face is that the lousy partition will cause workload
imbalance on different devices. On the other hand, we also
must ensure that all the three vertexes of the triangle we
count should be in the same partition. In this section, we will

Fig. 2. TC-Stream overview.
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use the vertical partition. The vertical partitioning algorithm
is used to divide the triangle counting task into multiple sub-
tasks. Each sub-task can be regarded as a local triangle count-
ing job on the sub-graph, and each partition consists of two
sub-CSR blocks and one sub-edge block. Specifically, each
partition needs to load two CSR chunks and one edge list into
theGPUmemory and then read the next one from amore sig-
nificant external memory such as the disk, the solid-state
drive (SSD), or the CPU memory. This is different from the
CPU triangle counting because the GPU triangle counting
kernel cannot actively call the threads of copying data from
the CPU memory to the GPU memory through the GPU
threads. Instead, all the GPU memory copy operations must
be performed before the calculations are done on the GPU.
Therefore, our algorithm scans the edge list to determine
which CSR partition to load. Also, all the sub-tasks are inde-
pendent of each other so that they can be calculated indepen-
dently. However, the downside of this storage method is
increasing the amount of the storage from CSR ðjV þ EjÞ to
CSR and edge list ðjV þ Ej þ 2jEjÞ. Although each sub-task
after vertical partitioning can be stored in the memory, the
amount in the storage also brings a significant overhead to
the transmission through the SSD� > CPU� > GPU
chain. The two problems are addressed as follows: First, we
notice that the workload is related to the number of edges for
the load balance problem, whether the algorithm is vertex-
based or edge-based. However, taking the edge-based as an
example, we can split the edge list into equal parts, but we
cannot be sure that all of them will consume the same time
because the neighbor list of each edge does not always have
the same size. Second, the vertical partition can address this
problem efficiently for the independent sub-task problem, as
shown in Fig. 3. If there is an intersection, it must appear in
the same column. Therefore, if the partition is vertical, the
partitionwill contain all the intersections.

Fig. 3a depicts the vertical partition management process.
First, do a 1-D vertical division to get P2 vertical partitions.
The block sizes of each vertical partition are then approxi-
mately equal by using different range boundaries for the ver-
tices of each vertical partition. Then horizontally divide each
vertical partition so that each horizontal partition will also
have a diverse vertex range. For example, the solid line
divides the first horizontal partition of each vertical partition.
Each Vertical Partition has a size no larger than M. Fig. 3b
shows that the size of the final partition result is P1 � P2. The
set intersection task is divided into many small partitions.
Assume that the number of partitions is P1 � P1 � P2, much
larger than the GPU’s memory. Therefore, designing the
pipelines of I=O,CPU� > GPU transport, and computation
can help improve overall system performance.

As we did before, rank the graph first. However, one
thing is different, and we need to collect the in-degree of
vertex because we need to do a vertical partition. After we
get the in-begin position array, we can use it to find the cut
points. Unlike the traditional 2-D graph partition strategy
(partition by source and destination vertices), TC-Stream is
suitable for multi-layer memory storage of GPU nodes and
can maximize each memory level’s storage utilization rate
and execution efficiency.

4.2 GPU-Friendly Intersection Design

The advantages of binary-search-based intersection on GPU:
(1)Finer-grained parallelization. No partition is needed for
the imbalance issue because of the tree structure. When dif-
ferent threads search in the binary tree, the max depth of the
tree is subject to the log-relation to the length of the longer
CSR. (2) Using on-chip shared memory to optimize the per-
formance. We cache top levels of the tree in shared memory
as they are themost frequently accessed part.

The disadvantages of binary-search-based intersection
on GPU: For the merge based algorithm, the time complex-
ity is OðdðuÞ þ dðvÞÞ. For the binary-search-based algorithm,
OðdðuÞ � logdðvÞÞ. When the dðuÞ < < dðvÞ, the binary
search based algorithm can perform better. However, when
dðuÞ and dðvÞ are equally large, the case can become worse.

The inadaptability of the merge-based intersection of the
CPU’s and the GPU’s architecture means that the GPU
architecture is very different from CPU’s architecture. The
most advanced CPUs have dozens of cores, and each of
them has its L1 cache running independently. Nevertheless,
many cores form a warp group in the GPU and execute
together in SIMD mode, sharing a small last-level cache.
Warp threads are not as independent as the CPU cores, but
they work together. Therefore, the traditional merge-based
triangle counting algorithm is not suitable for GPUs.

As shown in Fig. 4, a small adjacency list fits in the
Shared memory; the long adjacency list acts as a binary sort
tree. For sets A and B, jAj ¼ m, jBj ¼ n and m < n. Let i be
the middle of the smaller set, i.e., i ¼ m=2. The algorithm
first searches for the element A½i� in B, and if found, A½i�
will be the element in the intersection, and returns the posi-
tion j in B (if not, return j to satisfy B½j� < A½i� � B½jþ 1�,
where B½0� ¼ �1; B½n� ¼ 1). Regardless of whether the
search is successful or not, A will be divided into two parts,
Al ¼ A1; . . . ; Ai � 1 and Ar ¼ Ai þ 1; . . . ; Am. Similarly, B is
also divided into two parts, Bl and Br; the above algorithm
is then recursively applied to the left and right sets of sub-
sets until any sub-set is empty, and the algorithm obtains
and returns the intersection result.

For the binary search Algorithm 5, it goes to search for
the central element of the target set each time so that for a

Fig. 3. Vertical partition management.

Fig. 4. Memory access patterns.
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set of length n, 1þ logn locations will be probed in one
lookup regardless of whether the search is successful,
which is referred to as a Dynamic Probes method by the
authors, for example, the number of comparisons logn�
n for a binary search. Therefore, when a set intersects,
the number of similarities is reduced when a small set is
used to search in an extensive collection. Another advan-
tage of this method is that the smaller index created can
be fully cached.

Algorithm 5. Backward Unbounded Search Algorithm

binary rearchðtag; list; lenÞ
1: pos 2
2: len len� 1
3: while pos <¼ len do
4: if tag ¼ list½pos� then
5: return len� pos
6: else if tag < list½pos� then
7: pos pos� 2þ 2
8: else
9: return binary searchðtag; list; len� posþ 1; len� pos� 2Þ
10: end if
11: end while
12: return binary searchðtag; list; 0; len� pos� 2Þ

4.3 Overlapped Processing of the TC-Stream

As we mentioned in the last subsection, edge-based algo-
rithms face the problem of overused memory. The GPU,
which has limited memory, throw out of memory error
when the graph is too large. Therefore, we come up with
an edge buffer. The idea is that we can use a small buffer
in the GPU to store the edge we are calculating. After each
calculation has been done, load the next batch of edges
into the buffer. In addition to that, we also plan to use dou-
ble buffers to save the copy time of the buffer. The idea is
because we notice that the copy time from the host mem-
ory to the device memory can spend a while. Therefore,
we use two buffers to do this work. When a buffer is run-
ning on the GPU, the other buffer is copying the data.
Since each partition brought by the vertical partitioning
method is an independent, almost complete overlap of I/
O, CPU� > GPU transmission, then the calculation can
be achieved. Each sub-task uses three suffix identifiers: i; j,
and k, representing one partition in the vertical partition.
Partition (i,j) represents a set of edges, called the base-par-
tition, which determines which two vertex neighbors
should be intersected. Then, two adjacency lists are
selected from the partitions ði; kÞ and ðj; kÞ respectively of
the corresponding vertices intersect. Therefore, each sub-
task can be scheduled independently on the GPU. How-
ever, using the partition (i, j) in CSR format as the base-
partition does not provide fine-grained parallelism on the
GPU. It can only provide vertex-centric coarse-grained
parallelism, where each warp must handle all edges of a
source vertex, resulting in an unbalanced workload within
the GPU’s warp. To this end, we design an edge-centric
work division, using a vertical partitioned edge list as the
base group. As shown in Fig. 3b, the edge list of the verti-
cal partition contains the graph data in the edge list for-
mat, so it is easy to divide the work in the GPU. Each time

to process an edge is to compute the intersection of the
neighbor lists of the two vertices of the edge. The edge list
of the vertical partition may not correspond to the CSR
partition. This project uses the edge list partition as the
base edge, so it is aligned with the horizontal partition of
the corresponding CSR, a partition with P1 � P1 size. This
simplifies the representation of sub-tasks because the two
sub-tasks never overlap. In addition, the I/O overhead is
entirely flat in the stream buffer.

� Pre-process. When ranking by degree, we can collect
the edge list in the meantime. ChunkNum means the
number of buffer chunks.

� Load the Edge. For a single buffer, we can load the
Edge in the following manner.

� Performance Establish. In the datasets with high IOs,
regardless of whether the input data size is suitable
for the GPU memory capacity, the use of double buf-
fers provides the additional benefit of hiding the
CPU-GPU data transmission from the intersection of
the GPU.

5 EXPERIMENTS

A TC-Stream is 3000 lines of code implemented using c+
+ and CUDA. We used the CUDA9.0 toolkit, NVCC,
NVPROF, GCC 5.5.0, and OpenMP 3.1 to compile the
source code.

5.1 Graph Data Benchmark

In our experiment, we use five real-world graphs and three
synthetic graphs. The real-world graph is UK-2007, twitter-
2010, Livejournal, Yahoo, clueweb12 [72], which contains
the web pages in the UK field and its hyperlink information.
We first fix the number of nodes for synthetic graphs and
then randomly add the edges that do not form loops to gen-
erate the graph. We generated three synthetic graphs: Kro-
necker26 (scale 26, degree 16), Kronecker27 (scale 27, degree
16), and Rmat-27(scale 27, degree 16). Kronecker26, Kro-
necker27 are graphics that the GPU’s device Memory can
put down; Yahoo, UK-2007, and clueweb12 have data scales
far beyond the GPU’s device memory. The representation of
graph data is in the form of a side table. It can be seen that
when using binary files to save the graph data, the space
use for saving is smaller than that using text files, which is
about 40%. The average degree of vertices in the twitter-
2010 graph and the UK-2007 graph are about 57.7 and 41.2,
respectively, the average degree of vertices in the Yahoo
graph is about 17.9, the average degree of vertices in the
clueweb12 graph is about 46.9, and the average degree of
vertices in the composite graph is 16. The maximum out-
degree of the vertex of the social network graph is larger
than the maximum in degree.

We evaluated the TC-Stream and preprocessing time of
each state-of-the-art system using the applications described
in the section and analyzed its performance on a selection of
large graphs; Table 2 shows the preprocessing overhead of
the TC-Stream Han, OPT, PDTL, Bisson, and Graphreduce
on the SSD, which is capped at 500MB/s. Fig. 5 shows the
preprocessing times for the TC-Stream in multicore speed
up 18� over a single core.).
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5.2 Environment

The experiments used a server with an e5-2670@v3 proces-
sor, two sockets running at 2.3GHz, 32MB L3 cache, 12 cores
per socket, and a disabled CPU hyper-threading feature.
The server has 128 GByte of memory and 2TByte of the disk
(SSD), and the operating system was 64-bit Ubuntu 16.04
LTS. We compared the performance of different types of
GPUs(Volta V100, which has device memory of 16GB. Tesla
P100, which has device memory of 16GB. GTX 1080Ti,
which has a device memory of 11GB).

We compare the following five versions:

� Han: is the state-of-the-art intersection system based
CPU [33].

� OPT: is the state-of-the-art triangle counting out-of-
core system based CPU [40].

� PDTL: is the state-of-the-art triangle counting dis-
tributed out-of-core system based CPU [73].

� Bisson: is the state-of-the-art triangle counting in-
memory system based GPU [48].

� GraphReduce: is the state-of-the-art out-of-core sys-
tem based GPU [24].

5.3 Performance

5.3.1 In Device Memory GPU

Currently, the devicememory of the high-endGPUs is 16GB.
For placed in the GPU device memory (LiveJournal, twitter-
2010, Kronecker-26(Kron-26), Kronecker-27(Kron-27)),

We compared the state-of-the-art in-memory GPU sys-
tem [48] and the state-of-the-art CPU system [33], [40],
respectively. From Fig. 6 and Table 3, it can be seen that

Tesla V100 GPU is used to accelerate triangle counting, the
TC-stream is 2:4� and 3:5� faster than Han [33] and OPT
[40] on the twitter-2010 graph, respectively. The set inter-
section method of the binary sort tree is designed to maxi-
mize parallelism in the GPU. Using On-chip Shared
Memory to optimize the performance, we cache top levels
of the tree in the shared memory as they are the most fre-
quently accessed part, the TC-stream is 5:6�, 6�, and 5:8�
faster than the state-of-the-art in-memory GPU system Bis-
son [48] on twitter-2010, Kronecker-26, Kronecker-27
graph, respectively.

Fig. 7 shows the triangle counting performance of the
Tesla GPU and the GPU Pascal, the mainstream GPU in the
market. V100 is 1:5�, 1:9�, 2:2� and 3� faster than P100,
TiTanX, 1080Ti and K40 on the Twitter graph, because V100
GPU Tesla has a strong advantage in both the access band-
width and the quantity of the SM, it can be seen from
Table 1.

Fig. 5. Binary search-based intersection: Short adjacency lists fit in
Shared memory, the long adjacency list acts as a binary sort tree.

Fig. 6. Pre-processing times (in seconds) for TC-Stream in multicore.

TABLE 2
Real-World and Synthetic Graphs Data That are Used in Each State-of-the-art System’s

Experiments and Preprocessing Time(in Seconds)

Dataset Vertex Num Edge Num Avg Deg Triangle Size(binary) TC-Stream Han OPT PDTL Bisson Graphreduce

LiveJournal 4.8M 68M 17.8 285M 0.52 GB 0.89 2.4 97.3 3.5 2.7 1.2
Twitter-2010 41.6M 1.5B 57.7 34B 11GB 17.9 24.3 57.7 401.1 33.7 32
UK-2007 134M 5.5B 41.2 286B 28GB 176 262 1876 191 * 343
Rmat-27 128M 2B 16 114B 32GB 128 317 2016 84 * 312
Kronecker-26 67M 1B 16 49B 8GB 18 26.8 62.4 352 47 36
Kronecker-27 134M 2B 16 106B 16GB 47 61.3 154 977 * 219
Yahoo 1.4B 6.6B 17.9 85.7B 49.4 GB 194 1012 2187 217 * 7189
clueweb12 978M 42.5B 46.9 1995B 318 GB 2871 * 9106 3026 * 11253

”*” indicates that device memory is limited and failed to run successfully.

Fig. 7. Execution times for TC-Stream, Han, OPT, Bisson and
Graphreduce.
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5.3.2 Exceeds the Device Memory Capacity GPU

Graph data is partitioned to fit GPU memory and moved
from the host to the GPU, consisting of edges with destina-
tion or source vertices in some well-defined graph partition
(see Section 4.1 for details). They reside in memory buffers
that experience different access patterns. In terms of data
movement, buffers can be divided into static and stream-
ing buffers. Static buffers are copied to GPU memory only
once, usually during initialization. An example is the set
of vertices for a graph that fits into GPU memory. On the
other hand, stream buffers are moved in and out of GPU
memory as processing proceeds. At any point in time, a
particular instance of a stream buffer resides in GPU
memory.

Bisson [48] is an in-memory GPU-based system, which
cannot run successfully on three data sets (Yahoo, UK-
2007, Rmat27). For the graph data that exceeds the device
memory capacity GPU, from Fig. 8, it can be seen that

Tesla V100 GPU is used to accelerate triangle counting, the
TC-stream is 2:3�, 2:2�, and 1:9� faster than Han [33] on
the Yahoo, UK-2007, and Rmat27 graph, respectively, the
TC-stream is 2:8�, 2:6�, and 2:1� faster than OPT [40] on
the Yahoo, UK-2007, and Rmat27 graph, respectively.
Because we design a novel vertical partition algorithm that
can ensure that the computing is in-dependent on each
partition. each sub-task can load into the device memory,
computing on the GPU , I=O from the SSD and the com-
munication between the CPU and GPU can be perfectly
overlapped. The TC-stream is 2:6�, 2:3�, and 2:2� faster
than the state-of-the-art out-of-core GPU system GraphRe-
duce [24] on Yahoo, UK-2007, Rmat-27 graph, respectively.

5.3.3 Comparison to Distributed System

Implementation

WecompareOPT(the state-of-the-art triangle counting out-of-
core system based CPU [40]), Graphreduce(the state-of-the-
art out-of-core system based GPU [24]), and the state-of-the-
art distributed external storage graph processing the PDTL
[73] on clueweb12 graph, respectively. From Table 4, it can be
seen that Tesla V100 GPU is used to accelerate triangle count-
ing. The TC-stream is 2:4�, 4:4� and 3:6� faster than the
PDTL(8 machines), OPT, and Graphreduce on clueweb12
graph, respectively. Although it needs to move data between
the GPU and CPU via PCIe, OPT and PDTL benefit from local
(host)memory access. Tc-stream achieves significant accelera-
tion, e.g., 2:4� on OPT, 4:4� on PDTL, 3:6� on Graphreduce,
and ClueWeb12 for Triangle Counting processing. These per-
formance improvements were due to its (i)the asynchronous
model and leveraging CUDA Streams;(ii)Avoid unnecessary
kernel startup and GPU kernel idling; (iii)And Computing on

Fig. 8. Execution time of the run different GPUs.

TABLE 4
Comparison With Out-of-Memory Framework in Clueweb12

Framework Hardware setting machines SSD->CPU(Memory)
time(s)

CPU->GPU
time(s)

Computation
time(s)

Elapsed total
time(s)

TC-Stream 1 GPUs, V100 1 1113 1706 1918 2075
16GB Device Memroy

PDTL 2 CPUs, 12 cores/CPU 8 439 X 4743 4937
128GB RAM

OPT 2 CPUs, 12 cores/CPU 1 1119 X 8368 9406
128GB RAM

Graphreduce 1 GPUs, V100 1 1126 1884 5324 7302
16GB Device Memroy

”X” indicates No transmission time. ‘Out-of-memory’ means that the input graphs neither fit into the limited GPU memory, nor fit into the limited CPU
memory.

TABLE 3
Runtime (s) of TC-Stream and Han [33], and GraphReduce [24],

and OPT [40], and Bisson [48]

System LiveJournal Twitter-2010 Kron-26 Kron-27

TC-Stream 0.49 60 56 143
Han 1.3 148 141 343
OPT 2.9 210 227 528
Bisson 2.1 336 331 798
GraphReduce 1.6 112 173 316

A Tesla V100 GPU is used to test TC-Stream, Bisson [48], and GraphReduce
[24], and a CPU with 24 threads for Han [33], and OPT [40].

Fig. 9. Execution times for TC-stream, han, graphreduce, and OPT.
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GPU, I/O from SSD, and the communication between the
CPU and the GPU can be perfectly overlapped.

6 CONCLUSION

In this paper, we proposed the TC-Stream, a graph system
that supports an accurate triangle counting algorithm on
the graph data with up to tens of billions of edges, which
significantly exceeds the device memory capacity of a single
GPU card. Compared with the state-of-the-art CPU system,
a single-card GPU system, and a distributed system, the
TC-Stream has a good performance on both small-scale
graph data that can be stored in the device memory capacity
(2:4� 6�) and a large-scale graph data that exceeds the
device memory capacity (1:8� 4:4�).
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