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aDFS: An Almost Depth-First-Search Distributed Graph-Querying System

Abstract
Graph processing is an invaluable tool for data analytics.

In particular, pattern-matching queries enable flexible graph
exploration and analysis, similar to what SQL provides for
relational databases. Focusing on following connections in
the data, graph queries are a challenging workload because
even seemingly trivial queries can easily produce billions of
intermediate results and irregular data access patterns.

In this paper, we introduce aDFS: The first distributed
graph-querying system that can process practically any query
fully in memory, while maintaining fixed runtime memory con-
sumption. To achieve this behavior, aDFS relies on (i) almost
depth-first (aDFS) graph exploration with some breadth-first
characteristics for performance, and (ii) non-blocking dis-
patching of intermediate results to remote edges. We evaluate
aDFS both against state-of-the-art graph-querying (Neo4J
and GraphFrames for Apache Spark) and graph-mining (G-
Miner, Fractal, and Peregrine) engines and show that aDFS
significantly outperforms the rest on a plethora of workloads,
spanning from traditional graph queries to graph mining.

1. Introduction
Graph pattern-matching provides an interface for interactive
exploration of graphs, similar to SQL for relational databases.
It focuses on data connections, i.e., edges, allowing users to
submit queries with any pattern, filter, and projection. For
instance, the following PGQL [4] query:
SELECT a1.name, a2.name, a1.country = a2.country,

ABS(a1.salary - a2.salary) AS salary_diff
MATCH (a1:author)-[:likes]->(a2:author),

(a2)-[:likes]->(a1)
WHERE ABS(a1.age - a2.age) <= 10
ORDER BY salary_diff DESC

enumerates the authors of a similar age that like each other.
Answering such a query requires to find all homomorphic
matches of the query pattern in the target graph, while
enforcing the given filters (e.g., a1 IS author) and
projecting the requested output (e.g., whether a1.country
= a2.country). Graph queries are a key tool for graph
analysis, as indicated by the large number of existing
graph-querying systems [17, 8, 41, 19, 46, 79, 43, 63] and
languages [4, 42, 7, 6, 2].

Graph processing in general is a very active area of research.
There is a plethora of graph systems for classic graph algo-
rithms [25, 38, 54, 22, 33, 50, 23, 53, 75, 78] and for graph
mining [67, 21, 14, 61, 15, 70, 18, 28, 39]. Contrary to inter-
active queries, graph algorithms (such as e.g., PageRank [48])
are typically used in batch computations. Graph mining in-
cludes simple examples of graph pattern matching, enabling
the search of isomorphic patterns in the graph. However, it

does not provide the expressive SQL-like interface with rich
dynamic projection and filtering support that graph queries
call for (see Section 5 for further details).

The dynamic user-defined patterns, filters, and projec-
tions, the focus on edges, and the homomorphic matching
(i.e., finding all matching permutations of the query pat-
tern) make graph query execution a challenging workload
that needs to handle very large intermediate and final result
sets, with a combinatorial explosion effect. For example,
on the well-researched Twitter graph [32], the single-edge
query (a)->(b) matches the whole graph, amounting to
1.4 billion results, and the two-edge query (a)->(b)->(c)

amounts to 9.3 trillion matches—which means matching the
(a)->(b)->(c)->(a) cycle needs to consider 9.3 trillion in-
termediate results. Compared to relational queries, queries on
graphs can exhibit extremely irregular access patterns [55, 36]
and lack of spatial locality, calling for low-latency data access.
For these reasons, high-performance graph-querying engines
ideally need to (i) control the memory requirements to avoid
explosion, while (ii) keeping the computation in main mem-
ory and scaling out to a distributed system in order to handle
graphs and queries that exceed the capacity of a single node.

Query execution on graphs is typically based on one of
the two classic graph-traversal strategies: Either breadth-first
search (BFS) or depth-first search (DFS). Both BFS and DFS
have major advantages and drawbacks for distributed graph
queries: BFS traversals are easier to parallelize but, as with
distributed joins, suffer from explosion in the size of interme-
diate results, cannot be easily pipelined, and stress the network
bandwidth to shuffle data across levels of pattern matching.
DFS traversals reduce the size of intermediate results, but are
challenging to parallelize and result in random data access
patterns, wasting locality when iterating over neighbors.

In this paper, we introduce aDFS (almost-DFS): The first
distributed graph-querying system that brings the best of both
DFS/BFS worlds. aDFS processes graphs partitioned across
multiple machines fully in memory, and combines BFS and
DFS traversals to bound the maximum amount of memory
required for query execution, and to achieve a high degree
of parallelism. DFS, together with a distributed flow-control
mechanism, guarantee that the amount of runtime memory
remains within limits, while the BFS exploration allows for
better locality and parallelization during execution.

Worker threads in aDFS mainly prioritize DFS execution
for completing—and thus freeing—intermediate results. Ex-
ecution switches to BFS when matching a remote edge (i.e.,
an edge pointing to a remote machine) or when the runtime
detects that the query contains limited parallelism (i.e., a small
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set of intermediate results). To elaborate, for local edges,
worker threads perform DFS, unless aDFS detects that there
is a limited amount of available work on the local machine,
in which case they switch to per-thread BFS exploration until
there is enough parallelism. For remote edges, threads buffer
the matched intermediate results and continue with matching
the next edge in a BFS manner (i.e., the next edge is possibly
at the same depth as the current one). Once a buffer is full, the
worker thread sends the message to the target machine, unless
sending the message is blocked by the flow-control mech-
anism, which enforces the target memory limits. Section 3
expands on the design and implementation of the aDFS engine.

Section 4 thoroughly evaluates aDFS and shows that it is
capable of executing trillion-scale queries, with a 10GB per-
machine runtime memory cap. In our largest query, aDFS
computes a 9.3 trillion count pattern on the Twitter graph with
a rate of 7.3 billion matches per second. We compare aDFS to
two graph engines (i.e., Apache Spark GraphFrames [17] and
Neo4j [43]) and two relational database engines (i.e., Mon-
etDB [3] and PostgreSQL [5]) using the LDBC graph and
query suite [60]. aDFS completes the set of queries 43 and
53 times faster than GraphFrames and Neo4j1 respectively,
and 8 and 26 times faster than MonetDB and PostgreSQL
(as Section 4.2 shows, LDBC is “relational-friendly”). We
also compare aDFS to these four systems with schema-less
graphs and show that either aDFS is 16 to 9,200 times faster
than the rest, or the other systems simply fail to complete the
queries. Finally, we compare aDFS with three state-of-the-art
graph-mining systems, namely G-Miner [14], Fractal [18] and
Peregrine [28], and show that aDFS is up to 12, 625, and
18 times faster, respectively, on mining-oriented workloads.
We discuss related work further in Section 5.

The main contributions of this paper are the following:
• The aDFS distributed graph-querying system. To the best

of our knowledge, aDFS is the first query engine that fully
distributes computation over partitioned graphs and bounds
runtime memory;

• The novel combination of DFS (for eager completion of in-
termediate results), BFS (for performance), and flow control
(for controlling the size of intermediate state) to achieve per-
formance and scalability while capping memory usage; and

• The evaluation of aDFS, which shows that aDFS signif-
icantly outperforms the state of the art and is capable of
executing queries with trillions of matches.
In this paper, we enable efficient fixed pattern-matching

queries, which constitute the backbone of PGQL 1.1 [4]. De-
signing more PGQL patterns, such as regular path queries,
shortest paths, and sub-queries, is outside the scope of this
paper and left for future work.

2. Background and Motivation
Representing data as a graph is becoming increasingly popular.
The main advantage of graphs is that they focus on modeling
fine-grained relationships between entities. In contrast, the

relational model concentrates more on data and relies on
the heavyweight primary-key foreign-key (PK-FK) and join
mechanisms to link entities. However, when using graphs,
different models, data representations, and ways of exploring
them have a major effect on performance in the context of
graph processing and, in particular, querying.

2.1. The Property Graph (PG) Model
Property graphs represent the graph topology as vertices and
edges, and store properties and labels separately. Properties
can be associated to any vertex or edge and take the form of
typed key-value pairs. Labels are key-only and represent types
or categories, e.g., person or animal. Separating the topology
from properties avoids the proliferation of edges and allows
for quick traversals of the graph over its real structure. As
we detail in Section 5, although we focus in this paper on PG
graphs, our solutions could be potentially applied to alternative
models, such as RDF [11].

2.2. Graph Pattern-Matching Queries
Several languages for graph querying exist, such as PGQL [4],
SPARQL [6], Gremlin [7], and Cypher [42]. In its simplest
form, graph querying makes it possible to find patterns in
graphs, with filters and projections. aDFS uses PGQL, which
is modeled after SQL: Projection and aggregation operations
are the same as SQL, including GROUP BY and ORDER BY.
PGQL adds support for graph patterns and vertex and edge
labels. For example, the query presented in Section 1 adds
the MATCH clause to an otherwise valid SQL query. It matches
patterns that are homomorphic2 to the (a1)->(a2)->(a1)
cycle, while enforcing filters (e.g., a1 has label author) and
it projects or aggregates the requested data—including even
arbitrary expressions—out of the matched vertices and edges.

2.3. Graphs vs. Relational Joins and RDF
In PG graph engines, edges are stored explicitly and can be
traversed directly. In contrast, in relational databases, rela-
tionships are represented with PK-FK. Note that the de-facto
implementation of RDF triplets results in similar PK-FK be-
havior. Following any relationship means joining two tables—
or doing a self-join if the keys belong to the same table—and
producing the intermediate result. Therefore, while matching
multiple-hop paths is a relatively cheap operation in graph
engines since it only needs to “follow some pointers,” doing
the same thing in SQL requires a chain of multiple expensive
join operations that materialize intermediate result sets each
time. Consequently, graph engines can be much more efficient

1Using Neo4j Community Edition (benchmarks not audited by Neo4j).
2Graph queries require homomorphic matching, as data is projected out

of all matches, even if they are permutations of each other. In our example
query, if authora and authorb like each other and the filters are satisfied, the
result will include both rows with authora as variable a1 and as variable a2.
In contrast, isomorphic matching would return a single match. Homomorphic
matching returns at least as many results as isomorphic matching, hence
early-pruning techniques used for isomorphic matching are not applicable to
graph queries. In a graph query, isomorphic matching can be simulated with
filters or with query specifiers, such as GROUP BY.
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Figure 1: Matching cycles using aDFS vs. BFS.

than relational databases when it comes to matching graph
patterns (see Section 4 for a comparison).

2.4. DFS/BFS for Graph Exploration
DFS can expand one intermediate result at a time, starting from
the first variable in the pattern and continuing to the next until
the whole pattern is matched. However, this behavior results
in totally random accesses and is impractical for distributed
graph traversals: The only way to continue with strict DFS is
to directly send the intermediate result to the remote machine
and wait until it is picked up and completed.

Thus, graph exploration is traditionally done using BFS:
For each query edge (hop), the entire result set is computed,
and only then does the exploration of the next hop start. This
approach has two main advantages: (i) it is easy to implement,
as work is naturally divided into simple steps (hops), and (ii) it
is relatively easy to parallelize, as the entire input is known
before processing a hop (of course, skewed vertex degrees still
pose a problem). However, BFS has one major shortcoming:
Because the intermediate result set is produced between stages,
an intermediate result-set explosion can quickly occur.

Figure 1 illustrates this issue showing the average total mem-
ory usage of machines and execution time when matching
cycles of various lengths using aDFS and BFS (implemented
in our runtime) on a small graph [1] (875K vertices and 5.1M
edges). While both approaches are able to match cycles of
length one to four with similar performance, the memory con-
sumption of BFS explodes for five-hop cycles at approximately
60GB on each of the eight machines used for the experiment,
and BFS crashes with six-hop cycles after 96 minutes when
one machine runs out of memory (~768GB). Meanwhile, the
memory consumption of aDFS is almost constant.

3. aDFS: A Pattern Matching and Querying Sys-
tem for Distributed Graphs

The main design goals of aDFS are (i) enabling fast, fully in-
memory distributed queries of any size, while (ii) allowing for
limited, controllable memory consumption during execution.
The rationale for these two goals is as follows. First, high-
performance graph queries demand in-memory execution and
the ever-increasing size of data calls for distribution. Second,
server systems, especially in cloud deployments, are shared
by multiple concurrent users, hence no single query can be
permitted to saturate the system memory. aDFS achieves these
two goals through the following design principles.
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Figure 2: High-level architecture of aDFS.

1. §3.3: DFS-first and asynchronous communication. The
eager match completion of DFS gives aDFS fine-grained
control on the size of intermediate results during query
execution, but strict DFS would be inefficient when
matching a remote edge, i.e., an edge that leads to a
remote machine. For that reason, worker threads do not
block when encountering a remote edge, but place the
intermediate result in a message buffer and continue
with other local work instead. The buffer batches the
intermediate results and, once full, it is asynchronously
sent to the remote machine for further processing. Threads
only need to block if flow control dictates so.

2. §3.4: Flow control. Cross-machine communication is
controlled through a flow-control mechanism that caps
the number of in-flight intermediate result buffers. The
finite nature of these message buffers allows configuring
the amount of runtime memory that aDFS requires, while
the flow-control mechanism guarantees query termination
and deadlock freedom.

3. §3.5: Dynamic DFS/BFS balance. Besides the BFS style
of buffering for remote edges, aDFS includes a dynamic
approach for deciding whether to go DFS or expand with
BFS for local matches in order to improve parallelism,
locality, and work sharing across threads.
Before diving into these design principles, we first present

the architecture of aDFS from a high-level point of view (see
Section 3.1) and describe how aDFS generates execution
plans for graph queries (see Section 3.2).

3.1. High-Level aDFS Architecture
Figure 2 shows the high-level architecture of aDFS. Graphs
are kept in memory and are partitioned across machines based
on simple random vertex partitioning. For efficient traversals,
graphs are stored in the classic CSR (Compressed Sparse
Row) graph format. Due to graph partitioning, messaging
is necessary for moving intermediate results to the machine
which holds the target vertex. aDFS maintains two threads
on dedicated cores on each machine for messaging; a sender
and a receiver. Consequently, worker threads in aDFS place
their messages in software queues, from where they are picked
up by the sender. That way, aDFS also supports zero-copy
messaging over InfiniBand: Workers can use a set of pre-
allocated buffers, directly registered with the network card.

3.2. Distributed Query Execution Planning
Users submit declarative PGQL queries [4] to aDFS. As Fig-
ure 3 illustrates, each query goes through three transformation
steps (marked i through iii) before being executed in step iv.

Step i: Logical query planner. The first step translates the
PGQL query into a logical query plan, which consists of the
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PGQL	query logical	query	plan distributed	query	plan execution	plan

SELECT a, b.addr
MATCH

(a)->(b),
(a)<-(c),
(c)-[e]-(a)

WHERE
a.age >= 18 AND
a.type = c.type AND
has_label(e, ‘knows’)

ab c

<vertex match>
a: age >= 18

<neighbor match: out>
a->b

<neighbor match: in>
a<-c: a.type = c.type

<edge match: any>
c-[e]-a: label(e) = knows

(various	plans	possible	for	the	
same	query;	one	is	chosen	in	the	
next	step)

<stage a: age >= 18>
hop: out neighbor b

<stage b>
hop: inspection a

<stage a>
hop: in neighbor c

<stage c: a.type = c.type>
hop: any-directed edge a

label(e) = knows
<stage a>

hop: output

Stage 0:  filter : age >= 18
vertex a  hop    : out neighbor b

capture: a.type
output : +a

Stage 1:  hop    : inspection a
vertex b output : +b.addr
Stage 2:  hop    : out neighbor c
vertex a
Stage 3:  filter : a.type = c.type
vertex c  hop    : any-directed edge a
Stage 4:  hop    : output
vertex a

i ii iii iv

execution

Figure 3: From a PGQL query to aDFS execution. Three transformation steps before execution.

logical operators of Table 1. Similar to relational query plan-
ning, a given query can be executed by multiple logical query
plans. In the example of Figure 3, an alternative plan could
rewrite the query as (a)-[e]-(c)->(a)->(b). This first
step directly translates the query to an admissible plan, which
is then optimized in the following steps.

Step ii: Distributed query planner and optimizer. This step
specializes the logical query plan by taking into account the
specific characteristics of aDFS’s runtime. The query planner
rewrites the logical plan in terms of stages and transitions
from one stage to another (called hops). A stage is responsible
for matching or accessing exactly one vertex and contains
all the information necessary for matching the corresponding
vertex and for transitioning to the next vertex with a hop. In
the example of Figure 3, the topmost stage “a” matches the
first vertex a of the query, while the next one matches b. An
out-neighbor hop takes the execution from a to b.

aDFS supports four types of hops that specialize for dis-
tributed execution: neighbor match, edge match, output, and
inspection. Neighbor and edge hops have the same behavior as
the corresponding logical operators in Table 1. An output hop
produces a final match using the current intermediate result
and is always used in the last stage of a match.

Inspection hops are specific to distributed processing:
They bring the current intermediate result back to an already
matched vertex in order to continue query evaluation. In the
example of Figure 3, after matching a and b of (a)->(b), the
query requires again the neighbor list of the already matched
vertex a in order to continue with matching (a)<-(c).
Since the matched vertex b might be in a different machine
than a, the query planner introduces an inspection step to
“link” this disconnected pattern and bring back the context
to the machine of a. If a resides in the current machine, an
inspection hop is essentially a no-op.

In this step, aDFS rewrites the logical query plan with a cost-

Op. Example Short description
vertex

(x)
Match vertices of the graph (without following

match any edge)
neighbor

(x)->(y)
Having matched the left vertex x, match its

match neighbors y. Can be in-, out-, or any-directional

edge
match

(x)->...

(y)->(x)

Vertex x is known (already visited). Test if x
exists in the neighbor list of the left vertex y.
Can be in-, out-, or any-directional

Table 1: Graph operators used in the logical query plan.

based optimizer implemented with dynamic programming and
based on the following heuristics: (i) heavily filtered vertices
are preferred for the earlier stages of the plan, (ii) inspection
hops are not free and increase the plan’s cost, and (iii) the cost
of an edge hop is approximately log of the cost of a neighbor
hop, as it can be implemented with a binary search in the
neighbor list of the source vertex.
Steps iii–iv: Execution plan and execution. Finally, the
aDFS engine generates a concrete execution plan. Apart from
stages and hops, the execution plan contains filters (on vertices
and edges), as well as information on what data should be in-
cluded in the intermediate results in order to execute filters
of later stages and produce the final output. For example, in
the query of Figure 3, Stage 0 must collect a.type, since it is
required by the filter of Stage 3. Similarly, Stage 0 must put
vertex a in the intermediate result as it is part of the projection
of the query. Overall, each stage builds up the intermediate
result such that another thread, local or remote, can pick it up
and continue the computation. The resulting execution plan is
then submitted to the aDFS runtime, on which we focus next.

3.3. aDFS’s Depth-First Runtime
The runtime of aDFS is based on the stage and hop constructs,
described above. aDFS initiates the query by applying Stage 0
(matching of the first vertex variable of the execution plan) to
each vertex of the graph. This bootstrapping process happens
across machines, i.e., each machine starts from the locally-
stored vertices, and in parallel within each machine, i.e., each
worker thread handles a distinct set of vertices and performs
the bootstrapping process on these vertices one after the other.
Hops that follow remote edges send the intermediate match
(batched) to the destination remote machine where they are
picked up and continued by a local thread.
Bootstrapping a match. Figure 4 includes a high-level activ-
ity diagram of the aDFS runtime. Completing the execution of
this diagram from Stage 0 to the last query stage implements
the complete matching starting from a single vertex of the
graph. We explain these steps using the example of Figure 5.
Text in the blue italic face represents the activities in Figure 4.
The aDFS runtime assigns vertex Joe (the gray rounded rect-
angle of Figure 5) to a worker thread t, which tries to generate
new matches. The thread first tries to match Joe with Stage 0’s
p1 using “apply stage.” If the filter p1.name = “Joe” re-
turns false, the thread would try to backtrack to a previous
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Figure 4: Matching operations starting from a given vertex. The backtrack activity
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Name	=	“Joe”stage	0

Figure 5: Example graph query execution.
Rounded rectangles represent vertices, red
vertices and edges are matched.

stage and, because there is none, it would simply complete
this invocation. If there are more top-level vertices to explore,
t would start again with a different vertex.

In the example of Figure 5, we assume that the execution
plan matches vertex p1 as Stage 0. p1 matches Joe and t

continues with the hop: follow next edge operation, starting
from edge 1©. Since the :friend label filter is satisfied and
the edge is local, t proceeds via DFS next stage to Stage 1
where p2 is matched with the vertex with age = 20. Now,
since p2.age < 35 is satisfied and there is no next stage,
t produces a query output row and backtracks to Stage 0 to
continue with the next edge. At this point, the :friend edge
2© is followed, but the filter is not satisfied; that vertex has
age = 40. Backtracking to Stage 0 brings us to edge 3© with
label :follows, which is not matched.

Thread t is now done with local edges and starts processing
the remote ones (aDFS does not necessarily match all local
edges first). The first one, edge 4©, has label :friend, thus t
places the current intermediate result in a messaging buffer tar-
geting Machine 1 (buffer in message). Once the buffer fills up,
t tries to send the message to the destination. As Section 3.4
describes in more detail, flow control might temporarily block
t from sending the message; in that case, t tries to do some
other work (e.g., handling an incoming message). Once the
thread returns from performing these other tasks, it retries
sending the blocked message. Finally, t attempts to match the
last remote edge 5©, which does not match because of its label.
With all the edges of vertex Joe explored and no previous
stage to backtrack to, t completes this invocation.
Handling incoming messages (intermediate results). Work-
ers eagerly try to receive and process remote messages, always
prioritizing the latest stage with available work. Threads try
to process messages: (i) before starting new work, i.e., be-
fore apply stage at Stage 0 (new top-level vertex), (ii) when
flow control (temporarily) disallows message sending—in this
case, the impacted thread picks up a new message to process
while waiting for flow control to release the blocked message,
and (iii) once the matching operations (see Figure 4) have
completed on all local vertices—at that point, workers contin-
uously wait for incoming messages to complete any pending
work from remote machines.
3.4. Flow Control
aDFS allows specifying the total memory size M of the mes-
saging buffers to hold the intermediate results in any machine,
making it possible to cap runtime memory utilization. Besides

these buffers, aDFS only needs a small per-thread, per-stage,
additional memory allocation to hold the current ongoing local
match and metadata for thread blocking.

In order to enforce this memory cap, aDFS employs a simple
flow-control protocol. aDFS partitions the intermediate-result
buffers across the query stages, such that no stage can consume
all buffers (required for deadlock freedom). When a buffer
with intermediate results is full, the corresponding worker
requests permission to send the buffer to the target machine.
The flow-control protocol keeps track of the amount of data
D that has been sent to that machine but not yet processed. If
D is above a threshold (computed based on the memory cap
M; a machine does not accept more than M/#Machines worth
of intermediate results from any other), flow control blocks
the message transmission (controlled per stage, not for the
whole query) and the thread continues with some other work
before retrying to send the message. Once a message has been
processed, the handling thread informs the source machine
that this chunk of intermediate results has been completed and
makes this memory available for another message.

Flow-control performance. Figure 6 compares the query ex-
ecution latency without flow control (i.e., all messages of
intermediate results are sent as they are produced) to differ-
ent per-machine flow-control limits in aDFS (the graphs are
described in Table 2). In this experiment, we use a buffer
size of 256KB and eight machines; see Section 4 for details
on the experimental setup. The per-machine limit N is the
total number of outgoing buffers that this query execution
is allowed to have, therefore it also dictates the maximum
amount of memory M that a machine can utilize during the
execution of that query. Since all intermediate results could
be targeting a single machine at some point during execution,
M = N × (size of one buffer)× (number of machines).

The queries we execute are simple SELECT COUNT(*) and
include basic patterns such as (a)->(b)->(a) (Q1 and Q2)
and (a)->(b)->(c) (Q3 to Q6), with different filters. The
results show that aDFS is not very sensitive to the flow-control
limit, unless the limit is very low, e.g., 512 messaging buffers.
In that case, the flow control only allows a single outstanding
message per worker, per stage, per machine.

Figure 7 gives more insights in the execution of Q3 with
Livejournal: SELECT COUNT(*) MATCH (a)->(b)->(c).
The figure shows the maximum number of incoming and out-
going messages for the busiest stage on any of the eight ma-
chines, as well as the number of cases where the flow-control
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limits were reached. For very low limits (N = 512 messages)
the amount of blocking is very high, thus penalizing perfor-
mance (more than 3× higher latency). Still, the overhead for
switching stages due to flow control is generally low: Setting
N to 8,192 results in only ~10% performance loss compared
to no flow-control (OFF), while reaching 10 times fewer max-
imum incoming messages (2,087 vs. 21,793) and four-times
fewer outgoing messages (1,636 vs. 6,430).

3.5. Dynamic BFS for Local Edges in aDFS
For remote edges, aDFS essentially does (per-thread) BFS: A
thread matching a remote edge simply buffers the intermediate
result and continues exploring and matching the same stage,
which might produce new intermediate results.

While local processing could happen in pure DFS, doing
so can result in artificially limited parallelism for queries that
produce small sets of intermediate results. A characteristic
example is queries with a very narrow starting Stage 0, such as
MATCH (a)->... WHERE ID(a) = X; this narrow-start
behavior appears in several real-life queries (e.g., the LDBC
queries of Section 4). In such a query, the whole Stage 0 might
produce a single intermediate result, giving limited opportuni-
ties for parallelism. For these workloads, DFS can significantly
delay the expansion of intermediate results that are produced
in the system (both locally and through messages).

In aDFS, we solve this DFS limitation by dynamically
switching depth-first exploration to per-thread breadth-first for
local edges. aDFS maintains per-stage statistics indicating how
many buffers of intermediate results are available for threads
to undertake. A low number of intermediate results means that
the stage has not expanded enough, hence some threads could
end up not having sufficient work to perform. When threads in
aDFS are processing a local edge, they use this information to
decide whether to perform DFS or BFS, i.e., buffer the inter-
mediate result in a local buffer and continue at the same stage.

In practice, we keep these local buffers small, i.e., up to
a few kilobytes, in order to promote quick local work creation.
We further use a DFS threshold to decide when to work
depth-first: When the sum of the number of local buffers
(produced by the breadth-first expansion) plus the number of
message buffers from remote machines is greater than 2× or
4× the number of threads, threads switch to DFS. Having a

low threshold plus small local buffers allows aDFS to keep
the maximum additional memory consumption limited: If the
DFS threshold is set to n, the maximum number of threads
is t, the size of local buffers is b, and the query contains
s stages, the maximum additional memory in a machine
is (n + t) ∗ (s − 1) ∗ b. In the configuration used for our
experiments (t = 28, n = 4t = 128, s ≤ 11, and b = 8,192),
local buffers consume less than 12MB additional memory.
Controlled Experiment. Figure 8 illustrates the benefits of
this local-match BFS mode with the following two queries:
1:(a)->()->() WHERE ID(a)<$i
2:(a)->()-[e]->()->() WHERE e.cost<0.5 AND ID(a)<$i

using the Twitter graph extended with a uniform random edge
property with values in [0.0,100.0). In both queries, the
ID(a)<$i filter configures the cardinality of the first query
stage, translating to a potentially narrow starting point. In
Query 2, the edge filter also guarantees that the third stage in-
cludes a small number of intermediate results. The dynamicity
of aDFS brings significant performance benefits, especially
for queries with very narrow starting points. For example, for
Q1 with i = 1, Machine 0 hosts the match for Stage 0; without
the breadth-first mode (“OFF”), a single thread handles all the
55K local edges which lead to Stage 1. In contrast, enabling
dynamic local BFS (“ON”) generates more work early on and
allows splitting the work among local threads, each of which
operates on approximately 2,000 vertices for Stage 1.

LDBC Q20. We also briefly analyze the BFS-mode benefits
on LDBC Q20 (see Section 4 for more details):
MATCH (tC:tagClass)<-[:subClassOf]-(:tagClass)
<-[:hasType]-(:tag)<-[:hasTag]-(:post|comment)

WHERE tC.name IN ('Politics', 'Art', 'Country')

In this query, the first two stages match tagClasses and
Stage 0 results in only three intermediate results due to the
filter. The local BFS optimization brings 32% latency benefits
(8 vs. 5.5 seconds), by better paralellizing the work across
threads. Without the optimization, the most busy thread, i.e.,
the one that “gets stuck” in performing local DFS work the
most, spends 4 seconds in these local explorations: It matches
about 1,000 vertices in Stage 1, which result in 5.2 million
local matches in Stage 2 and 5 million in Stage 3. In com-
parison, with the optimization, the most busy thread spends
only 1.6 seconds in DFS work: It handles 4 million local
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Graph #V #E Schema Description
Livejournal [10] 484K 68.9M no Users and friendships

URandom 100M 1B no Uniform random edges
Twitter [32] 42.6M 1.47B no Tweets and followers

LDBC(100) [60] 283M 1.78B yes LDBC social
Webgraph-UK [12] 77.7M 2.97B no 2006 .uk domains

Table 2: The set of graphs we use for evaluation.

edges in Stage 2, which it successfully distributes to other
threads with approximately 500 local BFS buffers. Overall,
enabling dynamic local BFS provides significant speedup on
realistic workloads, while incurring at most 5% slowdown in
pathological cases.

4. Evaluation
The goal of our evaluation is to understand how well aDFS
performs as compared against other engines (graph, relational
or mining) that could be used in similar use cases, and how
aDFS scales as we increase the number of machines.

4.1. Experimental Settings
Hardware details. We use a cluster of eight nodes, each with
two sockets of Intel Xeon E-2690 v4 at 2.60GHz, with 14
cores (hyperthreads disabled/DVFS enabled), for 28 cores in
total. Each processor contains 756GB of DDR4-2400 memory
and LSI MegaRAID SAS-3 3108 storage. Each node includes
a Mellanox Connect-X InfiniBand card, all connected to an
EDR InfiniBand network (100Gbit/s).

Graphs and queries. Unless specified otherwise, we use the
five graphs of Table 2 for our experiments. The scope of
this paper covers user-provided fixed-pattern queries, thus
aDFS implements only a subset of PGQL 1.1 and does not
support constructs such as subqueries. Accordingly, we use
the 12 LDBC Business Intelligence (BI) standard queries [60]
supported by PGQL 1.1 (later PGQL versions support the
remaining LDBC queries). Out of these 12 queries, four
represent simple path patterns (i.e., Q4, Q17, Q23, Q24)
and are directly supported in aDFS. The remaining either in-
clude regular path queries (e.g., SELECT ... MATCH p1

-/:knows*/-> p2), or include sub-queries in projection
or filters (e.g., SELECT ... FROM (SELECT ...) ...).
We devise a simplified variant of these queries in order to sup-
port the benchmark specification as close as possible. For
example, the original query 6 is:
SELECT id(person),
SUM((SELECT COUNT(*) MATCH (m)<-[:replyOf]-(:cmnt))) AS rN
SUM((SELECT COUNT(*) MATCH (:prsn)-[:likes]->(m))) AS lN,
COUNT(*) AS msgN
MATCH (tag:tag) <-[:hasTag]- (m:post|comment)

-[:hasCreator]-> (person:prsn)
WHERE tag.name = ?
GROUP BY person, tag
ORDER BY msgN + (2 * rN) + (10 * lN) DESC, id(person)

We simplify the query by removing the two COUNT subqueries
in projections and from ORDER BY. We plan to extend the
PGQL support in aDFS in future work.

Note that the queries include patterns of varying complexity,
e.g., the one in query 6 above is rather simple, while query 17
matches the following complex pattern:

(x:person)-[:livesIn]->(c1:city)-[:partOf]->(cy:country),
(y:person)-[:livesIn]->(c2:city)-[:partOf]->(cy),
(z:person)-[:livesIn]->(c3:city)-[:partOf]->(cy),
(x)-[:knows]-(y)-[:knows]-(z)

Methodology. We perform 15 runs of each query and report
the median latency. For each experiment set, we execute the
queries in a per-graph round-robin fashion in order to reduce
caching effects. We use eight machines for aDFS, Graph-
Frames, G-Miner, and Fractal and make sure that all leverage
InfiniBand. The four other engines are single machine.

Engines and their configurations. We configure aDFS to use
up to 4,192 messaging buffers of 256KB per machine for
messaging. This setting translates to approximately 1GB of
intermediate results that can be produced per machine and
limits the worst-case maximum memory consumption of a sin-
gle machine to approximately 8GB (1GB outgoing, plus 7GB
incoming). We further use the configuration of Section 3.5 for
the local-edge dynamic BFS, resulting in up to a few MBs of
extra memory per machine. Altogether, the aDFS runtime con-
sumes approximately 10GB per machine. Of course, the graph
(that resides in memory) and the final query results consume
extra memory than these 10GB.

We first compare aDFS to four systems—two graph and two
relational engines—which we describe below. In Section 4.4,
we further compare aDFS to three graph-mining systems.

GraphFrames [17] is a distributed graph querying engine
built on top of Apache Spark [72, 9]; we use version 0.7 on
top of Spark 2.4.1 with 600GB executor memory per machine.
Neo4j [43] is a single-machine graph database, which use
stores its data on disk but uses an in-memory cache for per-
formance (caching effects are obvious in the first run of each
query). We use Neo4j Community Edition 3.5.3 and allow it to
manage the full memory of the machine. MonetDB [13, 3] is
an in-memory column-store relational database. Its distributed
support is rather rudimentary, resulting in worse than single-
machine performance for our join-heavy workloads. There-
fore, we use MonetDB 11.31.13 on a single machine, config-
ured to use the whole 756GB of memory. PostgreSQL [5] is
a relational database. We use version 11.2, tuned for a single
connection with memory cache size of 564GB and 198GB
of shared buffers. For both MonetDB and PostgreSQL, we
use the optimized schema/indices designed for the original
LDBC evaluation paper [60]. We choose these four systems
as they cover a broad spectrum of data-processing engines:
Distributed analytics (i.e., dataframes), single-machine graph
databases, and in-memory or traditional relational databases.

4.2. aDFS vs. Other Engines: LDBC
Experiment. We perform an end-to-end comparison of aDFS
to the four aforementioned engines. We use the LDBC graph
and BI queries which constitute an unfavorable workload for
aDFS and GraphFrames. In particular, the LDBC graph has
a relational schema, carefully partitioned in tables, such as
person, and post. For relational databases (as well as
Neo4j), this schema enables the exploration of small parts
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Figure 9: aDFS vs. other graph and relational engines on LDBC. QN is the Nth LDBC BI query. Error bars show min/max latencies.

of the graph for most queries. For example, the pattern
(:post)-[:hasCreator]->(:person) (taken from an ac-
tual query) needs to only access the tables post and person,
which are a relatively small part for the graph. In contrast,
aDFS and GraphFrames operate on the original graph model,
where the whole dataset is a single graph. The end result is
that these two systems perform more broad exploration even
on queries that are very narrow in terms of schema accesses.

Optimizing for relational schemas is outside of the scope
of this work. Still, we choose this workload for our end-to-
end comparison as it gives a glimpse to queries that can be
expressed well both in graph and relational engines. In the next
sections, we compare the engines with schema-less graphs.

Results. Figure 9 depicts the query latencies of the five sys-
tems. For most queries, aDFS is one to two orders of magni-
tude faster than GraphFrames. aDFS delivers 102× average
speedup and takes 43× less total time that GraphFrames to
complete the 10 out of 12 supported queries. GraphFrames
translates graph queries to dataframe joins, offered by Apache
Spark, which are significantly slower than aDFS’s graph traver-
sals. Additionally, GraphFrames is memory hungry, consum-
ing hundreds of gigabytes of memory in comparison to the
small footprint of aDFS. Furthermore, aDFS completes the
10 supported queries 53 times faster than Neo4j, with 35×
average speedup, although Neo4j leverages the graph schema
and utilizes the large amount of memory as graph cache (i.e.,
the whole graph resides in memory after the first run).

Comparing aDFS to the two relational engines, MonetDB
and PostgreSQL, we notice two different behaviors depending
on the query size. On the one hand, for large queries, such as
Q12 and Q24, which expand to large parts of the graph with
long paths, aDFS is significantly faster. On the other hand, for
small, very relational queries, such as Q15, Q17, and Q23, the
relational engines can be faster than aDFS. This is expected
given that just the distributed bootstrapping and coordination
overheads in aDFS account for several tens of milliseconds.
These different queries highlight the trade-off between the re-
lational table-focused joins compared to the graph exploration
approach of aDFS. Overall, aDFS completes the whole set
of queries 8.4 and 26 times faster than MonetDB and Post-
greSQL, respectively. The average speedups are 10× and 25×
against MonetDB and PostgreSQL, respectively. Conversely,
MonetDB is 2.4× faster than aDFS on Q23, while PostgreSQL
is on average 2.6× faster for queries 4, 15, and 17. Our BFS

adaptation of aDFS, described in Section 2.4, is 30% slower
than aDFS (not shown), while consuming more memory.

In conclusion, aDFS achieves better overall performance
than the four other engines while consuming lower/fixed run-
time memory. Both these characteristics are essential for a
graph processing server which targets large workloads and
possibly multiple concurrent users.

4.3. aDFS vs. Other Engines: Large Schema-Less Queries
Experiment. The classic property graph model is schema-less,
which enables users to easily query the whole dataset (unlike
the relational model which requires several joins and unions
of results). We thus compare aDFS to the other four engines
with the schema-less graphs of Table 2. For the relational
engines, the graph consists of two tables: One for vertices
and another for edges. Regarding queries, we use two simple
patterns, a cycle (a)->(b)->(a) as Q1 and a two-hop path
(a)->(b)->(c) as Q2, combined with aggregations in the
SELECT clause (variant “a” performs a COUNT(*) and variant
“b” AVG aggregations on a random vertex property). The con-
clusions remain the same for other patterns and projections
(not shown in the graphs). Note that it is impossible to evaluate
with more elaborate patterns, as the competing engines can
barely handle the simple patterns that we use.
Results. Figure 10 depicts the results. In most cases, aDFS
is about 2 orders of magnitude faster than the other systems.
For the large queries and graphs, we also see that the other
engines are either not able to complete the queries within
eight hours, or crash. In particular, GraphFrames crashes after
having consumed its 600GB of executor memory.

The speedups of aDFS over the other engines (for the
completed queries where there is no timeout) are: 16 to 62×
for GraphFrames, 1,105 to 9,200× for Neo4j, 20 to 169× for
MonetDB, and 60 to 190× for PostgreSQL. Neither the join-
based engines (GraphFrames, MonetDB, and PostgreSQL)
nor Neo4j are able to handle well these immense graph explo-
rations, although they have access to hundreds of gigabytes of
memory. In particular, Neo4j spills to disk, hence the extreme
performance difference compared to aDFS. Clearly, for graphs
and queries at this scale, a fast graph-optimized solution such
as aDFS, which handles them easily, is required. aDFS easily
handles these queries. With the largest query (Q2a on Twitter)
aDFS performs a 9.3T COUNT in 1,286 seconds, resulting in
7.3B matches per second, while consuming less than 10GB
per-machine memory for intermediate results.
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Figure 11: aDFS vs. graph-mining engines
on triangle counting and pattern matching.

4.4. aDFS vs. Graph Mining
Experiment. We compare aDFS to three graph-mining en-
gines, namely G-Miner [14] and Fractal [18], which are dis-
tributed, as well as Peregrine [28], which is single machine.
(Note that we requested the artifact of Automine [39] for eval-
uation, but the authors were not able to provide us with it.)
We use workloads from the G-Miner paper [14]: TC, i.e., Tri-
angle Counting, and counting instances of a more complex
pattern referred to as the P-pattern; with the four graphs that
are used to evaluate these operations in the paper. For aDFS,
we express both triangles and the P-pattern as graph queries.

Results. Figure 11 includes the performance of the four sys-
tems. Triangle counting (TC) is a classic isomorphism prob-
lem and highlights the difference between isomorphic and ho-
momorphic matching: For the three graph-mining engines, the
search for “unique” triangles is baked in the pattern-matching
algorithm, whereas in aDFS, we implement isomorphic
matching with dynamic filtering (i.e., (a)->(b)->(c)->(a)
WHERE ID(a)<ID(b) AND ID(b)<ID(c)). This results in
expensive filtering and heavier cross-machine communica-
tion compared to the other engines. Still, aDFS is faster than
G-Miner and Fractal for all graphs by up to 7× and 531×, re-
spectively. Peregrine outperforms all other engines including
aDFS on three out of the four graphs, as it is able to inter-
sect adjacency lists to quickly find common neighbors, an
optimization that performs particularly well for triangles and
which can be implemented in a straightforward manner on a
single machine, where the whole graph is accessible.

The P-pattern does not require explicit isomorphic checks,
as its vertices are differentiated by labels. We express it as:
(c:c)->(b1:b)->(:a)->(c)->(b2:b)->(:d) WHERE b1<>b2

in PGQL. When matching the P-Pattern, aDFS significantly
outperforms all other engines for all but one datapoint (G-
Miner on BTC); it is on average 12 and 65 times faster than
Peregrine and Fractal, respectively, and 8 times faster than G-
Miner on three graphs. G-Miner achieves the best performance
on BTC mainly because it replicates the target vertex label
with each edge, which increases locality and reduces com-
munication traffic. Such an optimization is not practical in a
real-world system in which vertices can have many labels and
properties of various types: Replicating vertex labels and prop-
erties for each edge can have unacceptable memory overhead.

Overall, although aDFS is designed for different workloads,

i.e., expressive graph queries, it is still very competitive, and
most of the times faster than state-of-the-art graph-mining
engines on mining-oriented workloads.

4.5. aDFS Scalability
Experiment. We use the LDBC workload to illustrate the
scalability of aDFS as we vary the number of machines.
Results. Figure 12 includes the speedups, normalized to the
latency of a single machine. Overall, aDFS exhibits very good
scalability: The average speedup from one to two machines
is 1.6×, from one to four machines is 2.5×, and from one
to eight machines is 5.4×. These numbers include various
distributed coordination, query compilation, and more fixed
overheads, meaning that the actual runtime scalability is even
better. Looking at the pure pattern execution time, without
coordination overheads, group by, and order by, the speedup
improves to 1.7×, 2.6×, and 6× from one to two, four, and
eight machines respectively (not shown). aDFS is designed
to scale: More machines translate to more compute resources,
more buffers for intermediate results, and often more BFS
exploration and higher network utilization, as the percentage
of remote edges increases with the number of machines.

5. Related Work
Database Management Systems (DBMSs). DBMSs offer
graph support via a multi-model premise, but focus on SQL-
like querying rather than pattern-matching querying [40, 47,
46, 37]. Kalinsky et al. [29] acknowledge that using DBMS
joins for graph pattern matching is suboptimal, and propose
hardware support to alleviate the issue. In contrast to DBMSs,
aDFS is an efficient in-memory distributed graph engine that
considers graph storage and queries as first-class citizens and
focuses on analytical rather than transactional workloads.
Graph Algorithms. There is a plethora of related work
for executing graph algorithms (such as PageRank [49]).
Single-machine solutions focus on various topics such as
proposing DSLs [25] or programming models [44] for graph
algorithms, performance optimizations [57, 59], leveraging
hardware features such as NUMA [74] and GPUs [45, 77], or
supporting out-of-core computing [76]. Distributed solutions
focus on topics such as asynchrous processing and perfor-
mance [22, 35], efficient partitioning [71, 75, 78], leveraging
hardware features such as RDMA [68], support for sec-
ondary storage [53], distributing sequential algorithms [20],
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approximate computing [64], alternative programming
paradigms [69], or fault tolerance [65, 16]. aDFS focuses
on graph queries rather than algorithms, but it shares features
with some of these distributed solutions, such as the use of
asynchronous processing or (random) graph partitioning.

Graph Querying. A number of single-node graph-querying
engines were proposed by academia: Sun et al. [58] and Lin
et al. [34] build relational and transactional engines, Graph-
flow [30] is an active graph database that supports evalu-
ating one-time and continuous subgraph queries, and Tur-
boFlux [31] optimizes fast continuous subgraph matching over
a fast graph update stream. Roth et al. prototype distributing
simple DFS exploration [52].

There are numerous industrial graph-querying solutions, be-
cause queries are key to allow users to effortlessly express any
pattern, filter, and projection. Neo4j [43] is a single-machine
engine that supports Cypher [42] queries. Amazon Neptune [8]
is built for the Amazon cloud. Facebook Dragon [19] builds
indices on updates for accessing data. Microsoft Graph En-
gine [41] is an in-memory data processing engine based on
Trinity [55], and TigerGraph [63] distributes GSQL [2] queries
based on the source vertex data for a given query hop. Fur-
thermore, there are also open-source distributed solutions.
JanusGraph [62], which supports Gremlin [7] queries, uses
distributed graph storage but does not distribute computation.
GraphFrames [17], implements graph pattern matching with
Spark using joins of dataframes.

To the best of our knowledge, aDFS is the first truly dis-
tributed query engine on fully-partitioned graphs that bounds
memory while maintaining fast query performance.

Graph Mining. While graph querying aims to match pat-
terns, enriched with filters and dynamic projections, graph
mining aims to find subgraph patterns characterized by com-
plex aggregate measures [67, 21]. Examples include triangle
counting, maximal clique finding, community detection, and
graph matching [51, 14, 39]. Technically, graph query engines
typically employ a vertex/edge-centric processing approach:
A state is maintained per vertex and communicated to its
neighbors [61, 39]. Graph mining engines typically follow
a subgraph-centric (often undirected and schema-less) pro-
cessing approach: They attach information to a large amount
of intermediate results composed of subgraphs [39] rather
than specific vertices. Additionally, while graph-querying en-
gines search homomorphic patterns by default, graph-mining
engines search for isomorphic patterns [18, 28, 15].

Single-machine engines include RStream [66], Au-
toMine [39], and Peregrine [28]. Distributed engines include

Arabesque [61], NScale [51], G-thinker [70], G-Miner [14],
ASAP [27], and Fractal [18]. aDFS shares features with some
of these engines: G-Miner [14] uses asynchrony, while G-
Thinker [70] and Fractal [18] attempt to bound memory con-
sumption. aDFS both uses asynchrony and adaptive graph
traversals that bound memory consumption. Of course, graph-
mining engines could also leverage our design. Graph-mining
engines do pattern matching, albeit not optimized for ex-
pressive graph querying with filters and dynamic projections.
Moreover, they usually rely on a simple graph model that does
not support any number of labels or properties of any types
for any vertex or edge.

RDF Graphs. The Resource Description Framework (RDF)
uses {subject, predicate, object} triples to represent graphs,
which can be queried with languages such as SPARQL [6].
RDF became popular with the semantic web and has been
the model of choice for many graph databases starting in the
early 2000’s [73, 24]. A number of works have focused on
distributed RDF graphs [26, 56].

Although the RDF model is equivalent to PG in terms of
expressiveness, there are differences: RDF adds links for every
graph data piece, including constant literals, it does not have
explicit vertices/edges—yet it can be viewed as a graph—and
it does not store properties separately. Triples force RDF en-
gines to process and join a much larger number of intermediate
results using e.g., a key-value style storage, and lose the graph
structure, resulting in slower neighbor lookup. To address
these drawbacks, some RDF engines use asynchronous pro-
cessing [24], or compute graph indices, using e.g., the CSR
representation, to mock the graph structure [73]. aDFS fo-
cuses on PGQL queries on the PG model, avoiding complex
and expensive joins. We note that the pattern-matching part of
query execution is largely orthogonal to the graph model and
aDFS’s techniques could be used for RDF graphs.

6. Concluding Remarks
Conclusions. We have introduced aDFS: An almost-DFS en-
gine for pattern-matching queries on distributed graphs. aDFS
is able to execute virtually any query on any in-memory graph
using at most a fixed, configurable amount of memory. aDFS is
also very fast and scalable. We compared aDFS to seven state-
of-the-art engines with diverse characteristics—graph-focused
or relational, distributed or single machine, in-memory or disk-
based—and showed that aDFS is up to orders of magnitude
faster than these engines.

Limitations and future work. aDFS uses simple algorithms
for query optimization and graph partitioning, as this paper
focused on runtime support for distributed graph querying. In
the future, we intend to improve distributed query planning and
optimization, together with graph partitioning and caching. We
will also consider query-optimization opportunities when the
underlying data has a relational-style schema (as described in
Section 4.2). In particular, introducing graph-schema support
would offer opportunities for pruning the exploration space.
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